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Abstract—The objective of this work is to pave the way toward
a carbon-neutral and efficient operational blueprint for the
waterborne sector, through the lens of the Industry 4.0 era. In this
direction, we demonstrate a cutting-edge integrated ecosystem
(ARTeMIS) for operational efficiency and environmental com-
pliance and focus on the respective building block comprising
the envisaged platform. ARTeMIS incorporates an IoT suite
responsible for data acquisition, as well as a multi-purpose pro-
cessing pipeline for CI/CD (continuous integration/deployment)
of simulation models concerning operational optimization. In
the context of this work, the proposed framework was adapted
accordingly to capture, analyze and continuously predict the
Fuel Oil Consumption (FOC), Effective HorsePower (EHP),
Speed, and pollutant concentrations, of the vessel. Utilizing
this streamlined procedure we are able to assess the scrubbing
efficiency, as well as the environmental footprint of the vessel
(CII - Carbon Intensity Indicator) in order to further optimize
the vessel operation. Furthermore, the paper argues on how
generic models like STEAM (Ship Traffic Emissions Assessment
Method) should be transformed radically with the utilization of
shipping 4.0 driven frameworks like the one proposed in the
context of this work. Finally, the unleashed highly accurate pre-
diction potential of the proposed system concerning operational
efficiency, anomaly detection, and environmental compliance is
demonstrated. The onboard proof of concept and the assimilated
results so far, are also depicted to illustrate the feasibility and
potential of the proposed approach.

Keywords-IoT, regression. ANN, MADM, digitalization, decar-
bonization

I. INTRODUCTION

The 4th Industrial revolution, welcomed recently by the
maritime industry, is often termed in pertinent literature as
Shipping 4.0. The potential of digitalization in the Shipping
4.0 era is based on and realized through innovative technolo-
gies and techniques that aim to optimize operational efficiency,
environmental protection, and decision-making based on a
set of state-of-the-art prediction models. Big data analytics
and deep learning techniques could be used to exploit the
vast amount of data captured in real-time from sensors, in

conjunction with digital or analog measurement instruments
and consequently upgrade the onboard network of devices to
an integrated IoT framework. In order to evaluate the theo-
retical potential of these technologies in a practical use case,
we implement a comparative analysis between the real world
(living lab) and a digitalized twin to continuously measure,
simulate and assess how we can improve the operational
efficiency and environmental compliance of vessels.

Air pollution from vessels constitutes a serious problem
according to official reports (1). Maritime transport emits
around 940 million tonnes of CO2 annually and is responsible
for about 2.5% of Global Greenhouse Gas (GHG) emissions.
These emissions are projected to increase significantly if
mitigation measures are not put in place swiftly. IMO, the
EU, Port authorities, and institutes constantly issue several
directives and procedures (SEEMP, MRV, EEXI, etc.) that
aim to provide a strict regulatory frame to control the global
or local emissions’ impact and develop mitigation plans on
the road to decarbonization and environmental protection. The
efficient operation of vessels in terms of fuel consumption
per mile is in close relation to air emissions. More precisely,
energy consumption instead of fuel oil consumption per mile
should be used as a term since the industry is currently eval-
uating other energy sources (renewables, electricity, nuclear)
and alternate fuels (LNG; H2; NH3; C2H5OH). Energy con-
sumption reduction could be also achieved with the adoption
of applied retrofits such as bulbous modification, propeller
design, and/or best maintenance and operation practices (trim,
weather routing, slow steam operation).

The main pillars of this paper concern mainly, emission
control - FOC approximation as well as the demonstration of
a SOTA digital platform for vessel monitoring and operational
optimization. More specifically the main contributions of this
work consist of:

• A novel method that couples standard marine engineering
theory with data-driven models to provide a robust FOC
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approximation method.
• A streamlined procedure for continuous monitoring of

the vessel. Causal analysis and event recognition meth-
ods utilizing SOTA algorithms are demonstrated in the
context of a streamlined algorithmic procedure for data
acquisition, processing, and curation.

• A consolidated approach that incorporates the afore-
mentioned methods to realize a holistic platform for
operational efficiency and environmental compliance.

Section II that follows analyzes pertinent literature on opti-
mal route planning emissions control and consequently FOC
estimation. Section III demonstrates the streamlined procedure
from data acquisition and curation to model deployment.
Section III illustrates the developed ARTeMIS systems and
elaborates on the specific methodology adopted for FOC ap-
proximation. Finally, section IV assimilates the contributions
of this work and outlines possible pathways to further expand
and enrich its findings.

II. RELATED WORK

A. The past: Vessel dependent solutions

During the last decade, due to the poor availability of
real measurements and vessel operational profile details, the
estimation of vessel emissions was performed using generic
statistical models and semi-empirical formulas, without tak-
ing into consideration vessel-specific particulars, status, and
operational data. Reasonably, the estimates were deviating
from the actual values and thus such models witnessed limited
usability in the shipping operational optimization context. A
successful emissions estimation model is the generic STEAM
(2; 3). Based on the ships’ vessel particulars (taken from
the IHS Fairplay database1), information from the engine
manufacturers, and AIS data for the vessel, this model is
able to assess the power consumption, the load of the engine
and therefore the fuel-oil consumption (FOC) of the vessel.
Consequently, the model estimates the emissions of NOx,
SOx, CO, CO2, PMs as a function of time and location. The
initial model has been revised several times to improve its
accuracy. In the third revision, the load during voyages could
be determined based on the ratio of the vessel speed and the
calculated resistance that the ship was required to overcome
at a specified speed (4).

The techniques employed in the literature for estimating the
FOC and therefore the emissions of the vessel are based on
vessel characteristics and/or environmental conditions, and can
be grouped into the following categories:

• White box models, where analytical equations and ap-
proximation methods (e.g. Computational Fluid Dynamic
equation - CFD), take advantage of a variety of vessel-
specific variables and hydrodynamic principles to model
the added resistance of the hull of a specific vessel (5).
The admiralty constant, as well as the resistance constant
(RL/∆V 2), where R is the total resistance and L is the
length overall of the vessel, have been utilized in the

1https://www.acml-egypt.com/Fairplay.html

past (6) to replicate the hydrodynamic behavior of new
ship designs by using only the design point values of
the corresponding parameters (speed (V), displacement
(D), length (L), breadth (B) and draught (T)), rather than
the whole spectrum of the operational domain. Thus, it
can be easily inferred that the purpose of the Admiralty
constant was to provide an initial baseline for comparing
the hydrodynamic performance of different ships in their
respective design conditions, rather than monitoring their
operational state. This makes it evident that the admiralty
constant was neither intended nor demonstrated to be a
suitable operational hydrodynamic performance indicator
for a ship.

• Data-oriented approaches that combine vessel-trajectory
data gathered from onboard sensors, coastal or satellite
receivers (AIS data), or Noon Reports, with Machine
and Deep-Learning algorithms. These techniques are
ranging from simple Regression analysis, using stand-
alone models like Support Vector Regression (SVR),
Lasso Regression (LR), Polynomial Regression, etc., to
ensemble non-parametric schemes like Random Forest
regression (RF), Decision Trees or AdaBoost, where
the approximation power of each model is appropriately
combined in order to infer the underlying function, and
Deep Learning approaches (7). Some methods also deal
with the problem of deteriorating performance as new
batches of data corresponding to arbitrary distributions
are introduced to the estimator (8).

• Grey-box model (GBM) approaches (9; 10) that combine
machine learning (ML) methods, also known as black-
box models (BBM), with analytical models, known as
white-box models (WBM), in order to increase the pre-
diction accuracy.

ANNs (Artificial Neural Networks) have been at the center
of attention lately in many research areas. As far as the
FOC of the vessel is concerned not many studies utilize the
computational power of ANN’s to approximate FOC, mainly
due to the problem of missing historical data. The studies
found in pertinent literature dealing with FOC estimation
from a deep-learning perspective are briefly presented below.
Some studies experimented with baseline sequential ANN’s
by applying a dropout in the weights in order to achieve
better generalization error (11) or by tuning a number of
hyperparameters (learning rate, number of neurons, number
of layers, activation function) utilizing brute force methods
like randomized grid search ((12), (13)). (14), employed a
Recurrent NN in order to estimate FOC, but without further
research as far as the architecture of the network is concerned.

B. The present: IoT-driven solutions

During the past few years, several IoT-related systems
have been developed, installed, and utilized successfully on
hundreds of vessels. Indicatively Greek innovative technology
companies are providing awarded AI/IoT empowered solu-
tions: Danaos with waves, Prisma with Laros, DeepSea with
Casandra, and METIS with Metis-Space provide dedicated



frameworks concerning total emissions monitoring and re-
porting that helps shipping companies to ensure regulatory
compliance and reduce their environmental footprint. The
main benefits for a shipping company that has deployed a
system that monitors CO2 emissions are rule compliance, con-
tinuous monitoring through a versatile Ship Energy Efficiency
Management Plan (SEEMP), adaptive solutions for anomaly
detection as well as tailor-made dedicated voyage planning
solutions for operational efficiency and environmental compli-
ance. The aim of this work is to encourage and motivate the
waterborne sector (shipowners, external vendors, charterers,
suppliers, end-users) to go one step further and incorporate
in their existing workflow the broad range of functionalities
offered, by the proposed envisaged digital ecosystem in order
to vastly automate the decision-making procedure towards a
carbon neutral and efficient operational blueprint.

III. THE PROPOSED PLATFORM FOR VESSEL MONITORING
AND ENERGY OPTIMIZATION

There are several operational optimization frameworks and
platforms for energy efficiency on vessels that consequently
reduce negative environmental footprint. These methods cor-
respond mainly to power management by modeling the propul-
sion system (main engine-propeller) of the vessel, alternative
fuels (LNG, LPG, methanol, biofuel, and hydrogen), photo
voltaic (PV) installments, waste heat recovery systems retrofit
or new design solutions. The proposed system, which is
depicted in Figure 1, combines Applied Research Techniques
for Monitoring, Identifying, and Suggesting (ARTeMIS) to
offer a versatile platform for energy efficiency to vessel
owners. ARTeMIS is envisioned and designed as a real-time
monitoring application of ship operations by employing a
digital replica of the en-route vessel. It aims to optimize a
variety of multivariate objective functions corresponding to
a variety of different dependent variables. These variables
range, from emissions reduction KPIs (FOC approximation) to
operational efficiency (Time Charter Equivalent (TCE) ) and
regulatory compliance (CII, EEOI) indicators. These are just
some of the parameters that ARTeMIS incorporates into its
workflow to provide tailor-made mitigation solutions toward
a carbon-neutral operational blueprint. The core functionality
of the envisaged platform entails a multidisciplinary Decision
Support System (DSS) consisting of various operational op-
timization approaches and mitigation strategies, like, Routing
optimization, Causal Analysis - Event recognition - Predictive
Maintenance (biofouling, corrosion - degradation of the hull,
charter party compliance, elicit goods identification), safety
(identification of parametric roll, prevention of cargo loss)
and emissions monitoring and projection. Furthermore, this
versatile ecosystem aims to provide a solution to a major
shortcoming of the maritime industry namely, slow steaming
that jeopardizes vessels utilization. This problem is being
addressed by implementing a Multiple Attribute Nonlinear
Decision-Making (MADM) support mechanism that aims to
optimize, jointly the trade-off between time saving and emis-
sions reduction, during a voyage, as it is depicted in Table I.

Table I: MADM nonlinear DSS model factsheet for mitigating
slow steeming

Symbol Description: Formula units
d Voyage Distance Miles
v Speed Miles/day
T Voyage duration:d/v days

R Voyage running cost per day (proportional)
excluding bunkering $/day

b
Bunkering cost: Fuel oil consumption cost:
tones per day · fuel ton-cost
focd · fC

$/day

F fixed voyage expenses: canal dues etc. $

E voyage cost expenses: F + (R+ b) · T $

I Income $

P Profit: I − F − (R+ focd · fC) · T $

cii cii = foc·Ef
∇·s = c·focd

v
grCO2 /tonmiles

TCE tce =
I−F−(R+focd·fC)·T

T

tce =
(I−F )·v−(R+focd·fC)·s

s

$/day

objective max(tce)

subject to CII < goal, t <= JIT , v > v(EPL)

The last two rows of table summarize the ultimate goal of the
proposed Decision Support System, which is to maximize TCE
during a voyage while on the same time adhere to regulatory
and Charter Party agreements and indicators. These indicators
refer mainly to CII (Carbon Intensity Indicator), JIT (Just In
Time Arrival), and speed (v) adopted during a voyage, that
can be adjusted accordingly to either comply or exceed EPL
(Engine Power Limitation) depending on the specific KPIs
established by the shipowner that outline the ”performance”
of a particular voyage.

Figure 1: Internal topology of ARTeMIS ecosystem

A. Pre-processing pipeline

1) Data acquisition: Data acquisition is being handled by
an onboard IoT infrastructure consisting of both analog and
digital measuring devices that are connected via wired and



wireless collector nodes on an intranet network. This net-
work is designed to be Available, Reliable, and Maintainable
(ARMed), to ensure continuous operation. Standard interface
protocols for hardware and software are supported. For in-
stance, the main Engine flow meter is installed in the control
engine room, where the temperature and mass/minute fuel flow
signals are wirelessly transmitted to a collector device with
two digital ports and two 2.0 mA ports. Similarly, the Torque
meter, which is also located in the engine control room, sends
EHP and RPM signals to a wireless collector with a serial
port that can be configured to RS232, RS422, or RS485 mode
using the NMEA 0183 protocol. This broad architecture of the
IoT framework enables the network to horizontally expand
by adding new devices, such as the continuous monitoring
system of scrubber emissions using an interface unit, which is
typically achieved through field bus communication, usually
realized via the Mod-bus protocol.

2) Data cleaning: Raw data, collected from the sensors of
the vessel, are in time-series form in the minute granularity and
tend to be “noisy” (i.e. high variance, high standard deviation
from the mean), and in some cases even erroneous. In order
to remove noise, we employed a fit & filter technique (10)
that effectively ”cleaned” the data but at the same time kept
the bulk of information needed for training robust predictive
models. Data filtering was implemented in two stages. First,
assuming that our dataset follows a normal-like distribution,
we filter out data points that lie outside of the 99% confidence
interval and keep values for each feature that lie within the
3-times standard deviation band from the mean value. Then
a transformation of the dataset into 15 min rolling window
averages is applied to further smoothen out any spikes and
outliers that occur in the feature set from the onboard sensors.

For further dataset cleaning, an algorithm based on DB-
SCAN (10) is applied. DBSCAN is an unsupervised machine
learning technique used to identify clusters of varying shapes
in a data set (15). DBSCAN can identify clusters in large
spatial datasets by looking at the local density of the data
points. The core functionality of DBSCAN clustering lies in
its robustness to outliers. It also does not require the number of
clusters to be decided a priori, in contrast with centroid-based
approaches such as K-Means. However, DBSCAN requires
two parameters: epsilon and minPoints. Epsilon is the radius
of the circle around each data point that defines the desired
density, along with minPoints which is the minimum number
of data points required within the epsilon radius for that data
point to be classified as a cluster. The FOC and STW as they
are collected from sensors (raw data), the quasi-steady and
DBSCAN cleaned version are visualized in Figures 2 and 3.

B. FOC predictive module

The maritime industry involves various stakeholders, who
have invested a considerable amount of time in fuel oil
consumption approximation. Each party involved strives to
measure, monitor and predict, the energy of the en-route
vessel while minimizing negative environmental impact. Al-
though measurement and monitoring solutions exist (as pre-

Figure 2: Raw & quasi steady filtered data (STW - FOC)

Figure 3: “Cleansed” version of STW vs FOC with DBSCAN

viously mentioned: Danaos-Waves2, Prisma-Laros3, DeepSea-
Casandra4 and METIS-Metis-Space5), the prediction of fuel
consumption remains a pivotal point for optimal voyage plan-
ning, maintenance, scheduling, and decision-making. Theoreti-
cal calculations mainly rely on the admiralty coefficient, which
concerns the preliminary estimation of the power required in
a new design to achieve the desired speed. This coefficient is
calculated using the formula first demonstrated in (16) and is
described as follows:

k =
∆2/3 V 3

EHP
, (1)

The admiralty constant as well as the resistance constant,
proposed by Telfer (17), were used to model the variation in
hydrodynamic performance of different ship designs. There-
fore, it is obvious that they used only the design point
values of the included parameters but not the whole range
of the operational domain. In other words, the velocity (v),

2https://www.danaosshipping.gr/news/innovation/waves performance
dashboards/

3https://www.laros.gr/
4https://www.deepsea.ai/cassandra/
5https://www.metis.tech/metis-space/



displacement (∆), and so on, were corresponding actually to
the design point values derived from open sea trials. Thus,
it was never intended to use these constants to monitor the
operational performance of an individual ship but rather just
to compare the hydrodynamic performance of different ships
in their respective design conditions. It is also noteworthy
that the originally proposed admiralty constant was a function
of “effective” horsepower (EHP) while the modern admiralty
coefficient uses shaft power instead (ITTC (2017)). Thus, the
two, clearly, differ by the factor of propulsive efficiency of the
ship, which is known to be varying for different operational
conditions. Thus, it can be clearly concluded that the originally
proposed admiralty constant or any of its variations were
actually neither intended nor proven to be an appropriate
operational hydrodynamic performance indicator for a ship.
Obviously, the admiralty coefficient was rather developed
to compare the hydrodynamic performance of different ship
designs. In any case, the idea of summarizing the calm-water
speed-power curve into a singular or a few constant values
can still be realized using a simple statistical analysis of the
operational data recorded onboard a ship.

Speed exponent (n), outlines the relationship between speed
and power, which is widely accepted as EHP ∝ v · n,
with n = 3 according to the admiralty coefficient. From a
physics point of view, the value of n = 3 is quite appropriate
for the low-speed range when the total resistance coefficient
remains constant (and therefore, independent of ship speed)
due to negligible wave resistance. Kristiansen (18) used a
computer model based on updated Guldhammer and Harvald’s
method ((19)) to estimate the value of n for container ships of
different sizes and service speeds. He concluded that the cubic
relationship is only valid for container ships in the low-speed
range.

C. White Box modeling: Proposed sfoc formulation and
prediction based on generalized admiralty coefficient

We can clearly conclude that the originally proposed ad-
miralty constant or any of its variations were actually neither
intended nor proven to be an appropriate operational hydro-
dynamic performance indicator for a ship. ARTeMIS aims to
exploit and enhance previous approaches that calculate the
mass flow rate of CO2, NOx, and SOx emissions utilizing
vessel particulars and ship’s main engine attributes (SFOC
curves, MCR, Nominal Power produced, etc.). It uses features
acquired in real-time from onboard sensor installments (e.g.
FOC, draft, speed, EHP, and Deadweight) instead of theoreti-
cal calculations and vessel-dependent variables and gets a good
approximation of vessel emissions.

The ARTeMIS ecosystem initiates its streamlined procedure
by identifying variables that have a high correlation factor
with the independent variable, which in our case is FOC.
To achieve this, the well-established Pearson method is em-
ployed to assess the correlation between all possible pairs of
the dependent variables. Correlation coefficients are used to
measure the extent to which two measurement variables ”vary
together,” similar to covariance. However, unlike covariance,

the correlation coefficient is scaled to ensure its value is not
dependent on the units of measurement.

Figure 4: ARTeMIS application layer for FOC approximation

From a physics point of view, the generalized admiralty
coefficient defines a log-linear relationship between speed
through water (STW) and shaft power (Ps). Thus, the pro-
posed theoretical model is employed, utilizing a multiplicative
exponential formula comprising the top four features (Power,
Speed, Draft, and Displacement) and is described as follows:

y(xi, . . . , xn) = c0

n∏
i=1

xci
i (2)

where y is the FOC of the vessel, x1, ..., xn are the aforemen-
tioned variables, and the coefficient ci refers to the constant
and variables’ exponents that are expressed as characteristics
of the vessel’s shape and/or hull roughness and should be
approximated. In order to conclude with a linear combination
of the variables comprising equation e1 we apply the natural
logarithm (i.e. ln) on both sides of the equation. Then equation
2 is transformed to 3.

ln(y(xi, . . . , xn)) = ln(c0) +

n∑
i=1

ciln(xi) (3)

Coefficients (ci) are generated by training a baseline re-
gression model described by equation 3 utilizing historical
data (FOC, EHP, speed) that are acquired from onboard
IoT systems. The aforementioned formula was thoroughly
evaluated on a test set of ≃ 104 observations, exploiting
the vast amount of data collected. The implemented white
box predictive model for known parameters such as Power,
Speed, Draft, and Displacement, utilizes the regression linest
function (20) which calculates the R2 score (coefficient of
determination) for a predicted ”best fit ”poly-line by using
the ”least squares” method. The model interface screenshot is
depicted in Figure 4.



D. Grey box modeling: Proposed FOC prediction based on
ANN and regression polynomials

Gray box models (GBM) a term first introduced in (21)
combine theoretical models (WBM) with data-driven ap-
proaches (BBM). In their simplest version, GBM attempt to
integrate prior knowledge extracted from a theoretical model
as a new feature to the training process of a Black Box Model
(BBM).

As it is evident from pertinent marine engineering literature,
and also known and accepted amongst marine practitioners,
EHP (power absorbed by the ship propulsion system) is
strongly connected with STW (speed). Towards this direction,
we aim to train a simple ANN, in terms of computational cost
and complexity, that utilizes as input, one variable, the speed
of the vessel, and has one output, the EHP.

yout = F(x,W) (4)

where x here is the speed of the vessel and W is the learned
weight vector.

The specifics of the architecture adopted to build the model
are not in the scope of this work. Nevertheless, it is crucial
to designate, that the number of hidden layers and inter-
connecting nodes of the network have been defined on the
basis of brute force principles, by utilizing an exhaustive grid
search algorithm. A variety of other hyper-parameters like
the activation function of the model have been determined
by leveraging certain laws of physics that govern the rela-
tionship between the two variables, with computational fluid
dynamics and marine engineering theory. The problem at hand
(EHP approximation from STW) is nonlinear and the optimal
solution requires the appropriate utilization of state-of-the-art
optimization methods. In order to exploit the approximation
capabilities of the model we utilized the generalized reduced
gradient method to appropriately update the weights and
converge eventually to a global optimum. The gradient of
the underlying objective function is updated by incorporating
into the model, the squared deviation, between the actual and
predicted value from the model (least squares minimization).

By utilizing as input to the GBM, the output of the WBM
(equation 3) we employ an enriched feature set, that can be
utilized as input for the GBM in the form:

Dn =

{([
x1

fWBM(x1)

]
, y1

)
, . . . ,

([
xn

fWBM(xn)

]
, yn

)}
Incorporating this method to ARTeMIS workflow, we are

able to enhance the predictive capabilities of the BBM and
approximate more “accurately” the EHP and therefore the
FOC of the vessel for any given speed value. Figure 5 presents
the actual data as well as the corresponding calculated output
from the NN.

E. Real world experimental evaluation: the IoT bridge

The evaluation of the proposed methodology and plat-
form has been performed in real conditions on a real-world
experiment that is described in the following. In the con-
text of emissions reporting and evaluation, a research team

Figure 5: EXP=f(STW) Orange: ANN predictions, Blue: real
measurements

(S.Team) embarked onboard a Danaos vessel for a 10-day trip
with a Horiba PG-350 portable multi-gas analyzer. Exhaust
concentrations of CO,CO2, NOx, and SOx emissions were
measured following the ISO 8178-2 protocol. The PG-350
utilizes NDIR (Non-dispersive infrared) detectors to measure
CO, CO2, and SO2 concentrations.

Figure 6: SFOC curve based on SHOP data

The goal of the S.Team was to evaluate the STEAM
methodology by approximating the fuel consumption of the
vessel utilizing the SFOC (Specific Fuel Oil Consumption)
curve that outlines SFOC - Main Engine load (M/E load)
relationship on different engine load rates, provided by the
engine manufacturer (Figure 6). In order to interpolate (or
extrapolate) for the whole operational domain (various engine
load values) we utilized a second-order best-fit function F :
F(load) = SFOC, fitted on the discredited SOC - M/E load
values (Figure 6). Utilizing F , the S.Team calculated the FOC
which at the same time is measured by the flowmeter sensor
installed on board. The flowmeter measurements were used to
train the GBM presented in section III-D In Figure 7 below
we demonstrate the approximation capabilities of STEAM vs
the GBM proposed.

The results presented in Figure 7 clearly show that the
GBM, a physics-informed neural network, which was trained
using a customized feature set that takes into account the



Figure 7: Actual vs STEAM vs GBM CO2 emissions

operational state of the en-route vessel, is capable of predicting
CO2 emissions with a higher degree of precision compared to
the STEAM methodology (a significant deviation is observed
of approximately ≃ 20% on average between the STEAM
methodology and the GBM).

The experimental results presented above, outline the impor-
tance for maritime companies to adopt a fully digitized and
automated operational blueprint, towards an informed decision
making procedure that aims to exploit, data-driven solutions,
by leveraging the approximation capabilities of deep learning
algorithms with real-time measurements, acquired from on-
board sensor installments. This vessel- agnostic streamlined
procedure will enable shipowners and externals stakeholders to
achieve efficiency in fleet management with tangible benefits
in terms of emission reduction, environmental compliance and
protection of crew safety onboard.

IV. CONCLUSIONS

Digitalization is a highly promising tool for the decar-
bonization of the shipping industry, without adversely affecting
operational efficiency. To achieve this, it is recommended to
apply multiple attribute decision-making (MADM) techniques
that analyze big data from IoT while cleaning the noise (high
veracity) attributed to the data inherently, with state-of-the-
art processing algorithms. While general models are available,
it is essential to customize and adjust them for individual
cases. The STEAM methodology should be adapted to the
new digital era, leveraging innovative technologies to explore
more efficient alternative solutions instead of relying on low
STEAMing.
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