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The maritime sector is required to adhere to the IMO 2020 - mandated reduction of emissions. This reduction can be
conducted by either using a compliant fuel with lower sulfur content, an alternative fuel (e.g. LNG, methanol), or
clean its exhaust gasses with a "scrubber" technology to reduce the output of SOx. The objective of this paper is to
present a holistic approach to continuously monitor and estimate the emissions of a vessel as well as to assess and
improve the efficiency of scrubbers. Furthermore the deployment of a cutting-edge, integrated framework,
incorporating the latest technological advances, that can offer the ability to capture, process and analyze vessels’
operational data in order to improve efficiency, sustainability, and rule compliance is presented. Particularly the
conceptualization and materialization of a big data application suite that exploits the IoT (Internet of Things) and Al
(Artificial Intelligence) advancements and technologies, to employ a “digital replica” of the en-route vessel is
demonstrated. By collecting a multitude of features from on-board sensor installments, we present how we can
effectively utilize these features, harvested in real time, in order to accurately assess and estimate the environmental
footprint of the vessel by employing robust Fuel Oil Consumption (FOC) predictors. Then we describe in detail the
streamlined procedure from data acquisition to model deployment, utilizing the proposed big data framework, in
order to assess and estimate the emissions during the operational state of the vessel. Finally, we demonstrate
experimental results by deploying comparative analysis utilizing operational data from one containership-centric
Living Lab (LL) in order to validate and confirm our approaches in terms of accuracy and performance in a real
world setting.

"Industry 4.0" in general literature. Representative examples
are Artificial Intelligence (AI) Big Data Analytics (BDA),
Cloud Computing and Internet of Things (IoT) applications
that are already influencing the maritime industry, which is
gradually and steadily transitioning into a new operational
blueprint, often termed as “shipping in the era of
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INTRODUCTION

State of the art efficient and comprehensive data management is
an indispensable component for modern pertinent scientific
research as well as for cross-sectoral multi-disciplinary
applications and technological advancements. The maritime
sector has witnessed an exponential growth in data availability
over the past few years, a fact that renders mandatory the
utilization of state of the art interoperable frameworks
responsible for aggregating — processing and analyzing this vast
amount of data. Cutting-edge technologies are linked to the
so-called "Fourth Industrial Revolution", often known as
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digitalization”. Shipping companies promote digitalization as
the future of the maritime industry and their efforts to set up
relevant strategies are already in progress. Examining these
initiatives in relation to digitalization would provide
stakeholders with a better understanding towards the way the
maritime industry is heading.

RELATED WORK
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Traditionally, due to the lack of actual measurements, the vessel
emissions are calculated using generic (i.e., non-vessel specific)
mathematical models that do not take into consideration vessels'
operational data. Although the predictions constitute a fair basis
to extract some preliminary conclusions and insights regarding
the carbon footprint of the vessel during a voyage, they
obviously deviate from the ground truth. A well-known model is
the generic STEAM (Ship Traffic Emissions Assessment
Method) (Jalkanen et al. 2012), that is based on an open-source
database of vessel particulars (IHS fairplay database -
fairplay.ihs.com). The STEAM model assesses the power
consumption, load of the engine and the fuel-oil consumption of
the ship. Based on these values, the model is used to evaluate
the emissions of IV Om, SOm, C O, COQ, as a function of
time and location. In the current version of the model, the
engine's loads during voyages can be determined with improved
accuracy based on the ratio of the vessel’s speed over the
calculated resistance that the ship is required to overcome at a
specified speed (Hollenbach 1998).

In the context of the EU project EMERGE (Moussiopoulos et al.
2020), the aforementioned method was further advanced and
expanded in order to include environmental conditions in the
emissions model. More specifically, the STEAM model was
extended with a capacity to include the impact of various
ambient contributions on ship’s fuel consumption and emissions.
External factors were included in the modeling like wind,
sea-waves, -ice and -currents. This extension enables more
realistic emission modeling, but can also be used to estimate the
magnitude of the effect of different features to ships’ fuel
consumption. Although this method refined the initial STEAM
approach it still lacks the approximation capabilities of an IoT
based data-driven model continuously refined and adapted by
real time sensory measurements.

Most of FOC theoretical calculations, found in pertinent naval
engineering literature, are based on the Admiralty coefficient
which is extensively used by marine practitioners and engineers
in the estimation of the power that is required for a new build
design to attain the required speed, and is given by the formula:

k= (VA2 V?) /ehp

where A is the displacement (#712) of the vessel, V' is the
desired speed and ehp is the effective horse power (kWh)

The techniques employed in the literature for estimating the
FOC of the vessel, based on vessel characteristics and/or
environmental conditions, can be grouped into the following
categories:

e White box models, where analytical equations and
approximation methods (e.g. Computational Fluid
Dynamic equation - CFD), are exploiting a variety of
vessel specific variables and hydrodynamic principles
to model the added resistance of the hull of a specific
vessel. The admiralty constant as well as the resistance
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constant (RL/AVZ), where R is the total resistance and
L is the length overall of the vessel, proposed by
(Telfer 1963) has been utilized in the past to replicate
the hydrodynamic behavior of new ship designs by
using only the design point values of the corresponding
parameters (speed (V), displacement (A), length (L),
breadth (B), draught (T)), rather than the whole
spectrum of the operational domain. Thus it can be
easily inferred that the purpose of the Admiralty
constant was to provide an initial baseline to compare
the hydrodynamic performance of different ships in
their respective design conditions, rather than monitor
their operational state. This makes evident that the
Admiralty constant was neither intended nor
demonstrated to be a suitable operational
hydrodynamic performance indicator for a ship.

e Data-oriented approaches that combine
vessel-trajectory data, gathered from sensors, satellites
(AIS data) or Noon Reports, with Machine and
Deep-Learning algorithms. These techniques are
ranging from simple Regression analysis, using
stand-alone models like Support Vector Regression
(SVR), Lasso Regression (LR), Polynomial
Regression, to ensemble non-parametric schemes like
Random Forest regression (RF), Decision Trees or
AdaBoost where the approximation power of each
model is combined appropriately in order to infer the
underlying function.

e Approaches where machine learning (ML) methods are
used in conjunction with analytical models in order to
increase the prediction accuracy. The former are also
known as black-box models (BBM), and the latter are
known as white-box models (WBM) and comprise
equations of motion of a freely floating body moving
with constant forward speed. The proposed models are
known as grey-box models (GBM) (Corradu et al.
2017) (Kaklis et al. 2019).

ANNSs (Artificial Neural Networks) have been in the center of
attention lately in many research areas. As far as FOC of the
vessel is concerned not many studies utilize the computational
power of ANN's to approximate FOC mainly due to the problem
of missing historical data. The studies found in pertinent
literature dealing with FOC estimation from a deep learning
perspective are presented briefly below. Some studies
experimented with baseline sequential ANN's by applying a
dropout in the weights in order to achieve better generalization
error (Gkerekos and Lazakis 2020) or by tuning a number of
hyper parameters (learning rate, number of neurons, number of
layers, activation function) utilizing brute force methods like
randomized grid search (Papandreou and Ziakopoulos 2020),
(Savitha and Abdullah 2017) (Miyeon et al. 2018). Yongjie,
Zuo, and Li (2020) employed a Recurrent NN in order to
estimate FOC, but without further research as far as the
architecture of the neural is concerned.
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The methods presented above are usually tested for a single
vessel and therefore lack the generalization capabilities of
models evaluated in a variety of ships that are able to adjust and
adapt to the underlying function that describes the relationship
between FOC and each specific vessel, continuously, by
exploiting the vast amount of data collected by IoT installments.
Frameworks and technological advancements regarding the
continuous monitoring of the vessel are inextricably linked with
the emerging concept of the so-called Digital Twin in the
shipping industry, as they employ a digital replica of the
en-route vessel that is able to simulate-project and validate in
real time the majority of the operational procedures. The term
Digital Twin, first introduced in (Grieves, 2014), constitutes a
virtual holistic representation of the vessel that spans its
life-cycle and is updated from near to real-time data, utilizing
simulation, machine learning and reasoning to help in
decision-making, sensing and control actuation.

In the following paragraphs, we present a prototype of a
Digital-Twin(ning) (DT) framework attempting to exploit the
abundance of features collected from sensor installments
on-board, by coupling the existing data acquisition network with
a novel fault-tolerant adaptive streaming pipeline responsible for
data processing and model deployment.

Utilizing this framework, we also introduce a novel deep
learning architecture that combines the approximation
capabilities of a data driven model, with theoretical naval
engineering methods in a consolidated physics-informed
approach, to enhance our predictions when estimating FOC and
therefore the emissions of a fleet.

PROTOTYPE OF

FRAMEWORK

Kaklis et al. (2022b) demonstrate a Big Data Analytics -
multipurpose - toolkit adapted to the needs of the maritime
sector. The proposed framework incorporates a variety of state
of the art streaming tools for real-time analysis of vessel data as
well as tools for continuous integration/deployment (CI/CD) of
ML/DL models regarding operational optimization, causal
analysis and event recognition. By utilizing the company’s
existing in-house infrastructure concerning Edge-Headquarter
(EDGE-HQ) communication between the vessel and the office,
we can incorporate the aforementioned pipeline in a broader
data acquisition network in order to aggregate, synchronize and
process data coming from the vessel in real-time. The resulting
platform (Fig. 1) constitutes a prototype version of a DT
framework enabling sensing and control actuation on the vessel
that aims to assist shipowners to achieve efficiency in fleet
management with tangible benefits in terms of emission
reduction, environmental compliance and protection of crew
safety onboard.

A DIGITAL-TWINNING
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Figure 1 : The envisaged DT framework for the maritime sector

Mainly, the proposed DT framework consists of the following
components:
e IoT backbone suite - Data acquisition layer
e Knowledge Hub - Processing - Orchestration -
Computing - Deployment layer
e Main GUI - Visualization layer
e Edge Computing - Sensing & Control actuation layer
- Requirements & Refinements elicitation

In order to collect a feature set that can be utilized in the context
of a data-driven FOC approximation model, we aim to utilize
the core functionality of the Knowledge Hub to assemble
features that correspond mainly to:

e Speed Though Water of the vessel that is based on the
GPS speed.

e The Mid Draft of the vessel that corresponds to the
mean value of the Forward and the Aft draft of the
vessel.

e The weather state at a specific time-instance and
location. Weather state is described by a multitude of
features like (Current Speed/Direction, Wind
Speed/Direction, Waves Height/ Direction, Swell Wave
Height/ Direction, Humidity, Visibility, Temperature
etc)

e The Fuel Oil Consumption (FOC) at a specific time
instance corresponding to the aforementioned features.

In the following subsections we will demonstrate a streamlined
procedure, incorporating a set of state of the art algorithms, that
aims to exploit, analyze and process the vast amount of data
acquired utilizing the proposed DT-framework, in order to
extract useful patterns and insights concerning the task of FOC
approximation.

Knowledge Hub

In this section we briefly describe a core module of the proposed
DT framework, as depicted in Figure 1, the Knowledge Hub
(KH). KH incorporates a variety of multi-disciplinary
approaches regarding data provision, re-usability and curation as
well as state of the art frameworks for model versioning and
deployment. It constitutes a holistic approach that aims to create
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an adaptive versatile observatory for the shipping industry that
comprises structured methodologies for inter-connecting each
use case with the appropriate data, processing algorithms and
simulation models. All these are joined together adequately,
facilitating towards the decarbonization of the maritime sector.
Figure 2 illustrates a multi-modal streamlined procedure, stored
in KH, adapted to the task of FOC estimation.
The Knowledge Hub aims to largely simplify and standardize
the way the wvarious tools and services provided by the DT’s
ecosystem are operating and communicating with each other,
following the standards of an ICT (Information Communication
Technology) framework. The general streamlined procedure is
based on

e Data Processing and feature selection

e Data Curation from bias and noise

e  Model Deployment
Data processing focuses on determining the most important
features for FOC estimation and data curation accounts for
removing the bias (outliers, faulty measurements) from the bulk
of data collected in real time from IoT installments. As a
post-processing step the calculation of correlation between the
most important features results in the selection of an ideal
feature set that combines importance and independence. The
resulting feature set is utilized accordingly in the training
process of a data driven FOC estimation model.

As showcased in Figure 2, the general procedure can be adapted
to the needs of a specific use case by selecting the appropriate
algorithms and models (shown on the side of each customized
flow) and applying them into practice.
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Figure 2: The streamline procedure adapted for the FOC
estimation use case.

In the paragraphs that follow, we provide more details on each
step from the perspective of its application to the FOC use case.

Feature Selection
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Data coming from on-board sensor installments concern
different compartments of the vessel (Bridge, Engine rooms,
Deck) and consists of approximately ~ 500 features. However,
FOC is highly impacted by the total resistance of the vessel as it
moves forward, so this hydrodynamic force opposing the
movement of the ship along its longitudinal axis, which is
known as total resistance, is the most critical feature to estimate
in order to correctly predict FOC.

The total resistance of the vessel consists of several
components: frictional resistance, viscous-pressure resistance,
wave resistance, added resistance and air resistance. Frictional
resistance is due to shear stress and it depends on the size of the
wetted area of the vessel. It usually represents about 70-90% of
the ship’s total resistance for low-speed ships (bulk carriers and
tankers) and accordingly less than 40% for high-speed ships
(containers and passenger ships). Viscous-pressure resistance
depends on normal stresses and usually ranges from 5% to 10%
of the frictional resistance. Wave resistance stems from the
non-viscous pressure created by the wave system created by the
ship moving steadily in calm waters and may rise up to 30% of
the calm water resistance for moderate to high Froude numbers'.
Furthermore, Residual resistance is defined as the total
resistance minus the frictional resistance and as a result consists
of the wave resistance and the viscous pressure resistance due to
the form or curvature of the hull. Added Resistance measures
the effect of waves and may rise up to 30% of the calm-water
resistance. The characteristics of waves like their amplitude and
wave length are determined from the ocean-wave spectra along
the voyage path. These spectra are modeled on the basis of the
strength and duration of the wind and the geographical area.
Wave characteristics (height, length) are used as forcing terms in
the system of hydrodynamic equations in order to model the
wave-body interaction of ships moving through wind-generated
waves. Another component that constitutes the total resistance is
Air resistance that normally represents about 2% of the total
resistance, however, for loaded container ships in head wind, the
air resistance can be as much as 10%.

Based on the above, through Feature Selection we create a
subset of the original set of ~500 features that consists of
features which heavily affect total resistance, such as:

e Features that correspond to the frictional resistance and
can be utilized in the context of a FOC estimation
scheme like Speed Through Water (STW), Draft and
Displacement.

e Features that describe the wave resistance components
(Wave height/Direction, Wave Period, Swell Wave
Height/Direction, Swell Period).

e Features that model the air resistance component (Wind
Speed/Direction, Combined Wind Wave
Height/Direction, Current Speed/Direction).

In order to further reduce the dimensionality of our dataset, we
conduct PCA (Principal Component Analysis) to determine the

! The Froude number Fr=V/sqrt(gL) stems from the dimensional
analysis of inertia vs gravitational forces.
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principal components (expressed as appropriate linear
combinations of the initial set of features), that can model the
dataset in its entirety, in terms of explainable variance, in the
best way possible. As depicted in the following graph (Fig. 3),
the variance entailed in the dataset can be attributed, as a whole,
to the first 10 components extracted from PCA.

Total Explained Variance: 99.53%

Explained Variance

100 200 300 400 2 4 6 8 10
# Components # Components

Figure 3: Dimensional reduction via PCA

In Kaklis et al. 2022b we demonstrated the applicability of a
consolidated approach that combines Random Forest and
Spearman Correlation to extract the most important and
independent features to estimate FOC. By applying this
algorithm and taking into account the PCA presented above, we
conclude with the most important independent features to be
exploited in the next sections in order to approximate FOC via
data driven methods.

In Table 1 we depict the experimental results from conducting
multiple regression analysis utilizing the aforementioned
algorithm. Detailed description of the features and their
abbreviation as well as their measurement unit is also presented.

Table 1: Feature ranking utilizing RF algorithm

Algorithm

RF
Ranking Feature Abbrv. Meas. Unit
1° Power P kW /h
2° Speed Through Water STW kn
3° Displacement A tn
4° Draft Dr m
5° Combined Wave Height CWH m
6° Swell Wave Height SWH m
7° Current Speed CS kn
8° Current Period CP sec
9° Swell Wave Period SWP sec
10° Current Direction CD °
11 Swell Wave Direction SWD °

Data Cleaning

Raw data, collected from the sensors of the vessel, are in
time-series (minutely) form and tend to be "noisy" (high
variance, high standard deviation from the mean) and in some
cases even erroneous. In order to remove noise, Kaklis et al.
(2022b) employ a fit & filter technique that effectively "cleans"
the data, but at the same time keeps the bulk of information
needed for training robust predictive models. The raw vessel's
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speed and corresponding FOC collected from the sensors versus
quasi steady filtered data utilizing the algorithm from (Kaklis et
al. 2022b) is depicted in Figure 4.

Raw data

Quasi steady filtered data
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Figure 4: Measured STW vs FOC for a timespan of one year

An alternative method for removing noise from the dataset is to
apply the DBSCAN (Density-Based Spatial Clustering of
Applications with Noise) clustering algorithm. DBSCAN is an
unsupervised machine learning technique used to identify
clusters of varying shape in a data set (Ester et al. 1996). It can
identify clusters in large spatial datasets by looking at the local
density of the data points. Its main advantage is its robustness
against outliers and noise, which are removed from the
clustering scheme.

Estimated number of clusters: 7

100

" stw [kn‘i

Figure 5: “Cleansed” version of STW vs FOC with DBSCAN

DBSCAN can work without an expected number of clusters
(such is the case with the popular K-Means clustering
algorithm), and requires two parameters: epsilon and minPoints
to define dense clusters of arbitrary shape. Epsilon is the radius
of the circle to be created around each data point to check the
density and minPoints is the minimum number of data points
required inside that circle for that data point to be classified as a
cluster.

Figure 5 depicts the resulting clusters, and corresponds to the
points that remain after removing noise. What is even more
important, when comparing the plots in Figures 4 (right) and 5 is
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Density

that the DBSCAN based noise removal method is in agreement
with the denoising procedure demonstrated in (Kaklis et al.
2022b). More specifically, if we apply the Kolmogorov-Smirnov
(KS) test to the distributions of the two "cleaned" versions of the
data, we validate that they are following the same pattern. KS is
a non-parametric test (normality is not a prerequisite) that
evaluates the maximum absolute difference between the
cumulative distributions of the two groups as follows:

stat = sup,|Fy(x) — Fy(x)| 2

where F' 1, F5 are the two cumulative distribution functions
and x are the values of the underlying variable (here FOC).

We can visualize the value of the test statistic, by plotting the
two cumulative distribution functions and the value of the test
statistic as well as their histogram (Fig. 6).

Density Histogram Kolmogorov-Smirnov Test
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Figure 6: Histogram and KS-Test of the FOC values extracted
after applying the Custom de-noising algorithm and DBSCAN

MODEL IMPLEMENTATION

The dynamic estimation of FOC based on vessel state and
environmental conditions can be examined as a multivariate
time-series prediction problem, that takes into account the actual
values, as well as their recent history, and captures the
information hidden in the values evolution over time. Based on
the superiority of recurrent, Long short-term memory (LSTM)
Neural Networks, over traditional time-series prediction
methods (e.g., ARIMA in (Namini et al. 2018), LTSM NNs are
chosen as the basis of our solution.

In a previous work (Kaklis et al. 2022b) we demonstrated the
approximation capabilities of a novel recurrent neural network
that was utilizing a reduced featured set (vessel, speed, basic
weather features e.g wind speed and wind direction), in order to
approximate FOC. To expand this limited set of features we
employed a pre-training step that attempts to extract prior
“knowledge” by training multiple Spline-based regression
(Friedman 1991,) models in a parallel fashion and distilling this
information gradually into the architecture of an LSTM neural
architecture.

In what follows, we describe how this LSTM network is
exploited and further adapted in an enriched feature set to
approximate FOC and eventually CO, emissions, as well as how
it can be utilized in conjunction with analytical models,
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calculating the total resistance on the basis of fluid dynamics
and naval engineering.

White Box modeling

The admiralty coefficient is often used as a hydrodynamics
performance indicator of the vessel and it summarizes the
relationship between speed power and displacement (Gupta et
al, 2021). In the context of preliminary ship design, it is
necessary to approximate the power consumed by the propulsion
system of the ship without resorting to model experiments. One
method that has been widely used for this exact purpose utilizes
the admiralty coefficient. This is based on the assumption that
for small variations in speed the total resistance may be
expressed in the form:

APV /P 3)

where V is the vessel speed, P is the power absorbed by the ship
propulsion system and A is the displacement of the vessel. The
coefficient was originally utilized to model the hydrodynamics
performance for a variety of different ship designs. The speed
(V) and power (P) were corresponding to the design point values
of different ships rather than the whole operational domain.
Nevertheless the idea that we can model calm water resistance
of the wvessel by employing a simple analytic function,
connecting the displacement, speed and power is appealing if
combined with a statistical approach, that exploits the vast
amount of operational data collected on-board and thus
ultimately unveiling the relationship between those variables
and resistance in calm waters.

From a mathematical standpoint, the admiralty coefficient
defines a log-linear relationship between the engine propulsion,
the speed-through-water (V), shaft power (P) and vessel
displacement. It also takes into account, indirectly, the vessel’s
draft as the process of calculating displacement includes first
determining the mean draft (averaging the port, starboard, sides
forward, midships, and astern draft marks of the vessel). Since
all the above are always subject to the vessel specifics, the
proposed theoretical model can be applied in any vessel utilizing
a multiplicative empirical exponential formula comprised of the
top four features (Power, Speed, Draft and Displacement) as
extracted from the preliminary data analysis conducted in
previous section and is described as follows:

i=1 “4)

where y is the FOC of the vessel, T1---Zn are the
aforementioned variables and c? are constants that can be
expressed as a function of characteristics of the hull below
waterline (shape and roughness of the hull).
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In order to conclude with a linear combination of the variables
in Eq. 4 we apply the natural logarithm [n on both sides of the
equation, which is then transformed to:

In(y(x;, ..., zn)) = In(co) + Z ciln(z;)

i=1 6)

Since data corresponding to vessel's specifics variables
describing the geometry and the state of the hull are not
available we attempt to give an initial approximation of the
exponents C1, - - -, Cn by training a baseline linear regression
model £ utilizing equation (5) with historical data, excluding
the weather impact (calm water resistance) provided by
on-board sensor installments.

In order to evaluate the proposed empirical formula with a well
established model calculating the total resistance of the vessel
we are employing the Guldhammer and Harvald method
(Guldhammer and Harvald, 1965), an empirical method based
on an extensive analysis of many published model tests. The
method depends on relatively few parameters and is used for
residual resistance prediction in the present analysis. The
method presents curves for the total calm water resistance (CT)
as function of three parameters: i) The length-displacement ratio

(L / Al/g ), ii) the prismatic coefficient (Cp) and finally iii)
the Froude number (F).

In Figure 7 we depict the -calculated Power using
Guldhammer-Harvald method, for a test vessel utilized in the
current study, as well as the quasi steady mean M/E Power in
calm water conditions acquired from on-board sensors
installments for different speed ranges.

40000} —— mean actual power /
calc. power (Harvald) y
35000 /
30000 o
izsooo /
g 20000 | yd
215000 -
10000 L~ L
50001 —
8 10 12 14 16 18 20 22
speed [kn]

Figure 7: Power (P) vs Speed (V)

We can observe from the graph that the Speed-Power
Guldhammer-Harvald curve follows the operational Power
reported from the vessel, thus providing a strong baseline. It also
allows us to extract useful insights and provide any reasoning or
causality regarding deficiencies in the operation of the
propulsion system, or the fouling-degradation of the hull. More
specifically by evaluating the deviation between the reported
and the calculated Power:

AP = Pdata - Pemp (6)
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we can estimate the fouling friction coefficient (AC F) of the
hull over time.

It is clear that the white box method that we propose for FOC
approximation (Eq. 5) acts in a similar way by calculating the
residuals between the reported FOC in calm water conditions
and the approximated value.

Black Box modeling: SplineLSTM

In a previous work (Kaklis et al. 2022b) we demonstrated the
approximation capabilities of spline-based regression models
(Friedman 1991) and their ability to adapt to the linear and
non-linear patterns that exist between dependent and
independent variables, as those that describe the underlying
function that approximates FOC. A spline regression of degree
d partitions the input space in sub-domains separated by k
knots. Each domain is approximated by different polynomials
of degree up to d. Splines of order d have continuous d — 1
derivatives, a property that balances the trade off between
goodness-of-fit and smoothness of the spline interpolant, and
results in a predictive scheme with good generalization
capabilities.

An example of spline regression and the polynomials that are
constructed in training time given a multivariate feature set:
Z1,---,TN and a target variable Y is described as follows:

Hyi(214, .0 01N, )b1s, 1 € [t £y + At]

y=flx)=
Hki(Iki--~IkN,)bk'i~ Tki € [ti -+ (k‘ — 1)At,ti + k‘At],

0 otherwise @)

where:
- t; is the corresponding time-step of observation Zi,
-k is the number of knots of the pre-trained
SplineModel;,
H (*%) are piecewise continuous hinge functions of
order d > 1 defined on subsequent time intervals, and
- bin are the regression coefficients of the pre-trained
spline models, where ¢ € [1, K],
The proposed spline-based LSTM network uses the knowledge
gained in the pre-spline-training step described above, for
providing an extended input vector of size & + IV in each case,
where k is the number of knots of the respective spline
function. The Spline network evaluates each feature Zi on the
corresponding hinge function H; generated from Spline
regression creating a k£ dimensional vector that quantifies the
impact of each feature in FOC estimation.

In previous works (Kaklis et al. 2022a), (Kaklis et al. 2022b), it
has been thoroughly demonstrated the efficiency and
applicability of the proposed recurrent Neural scheme by
evaluating its performance in a variety of settings. Ranging from
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training the model in a continuous manner (online) or utilizing
its output as the main component of a cost function evaluating
the next way-points in the context of a Weather Routing
optimization algorithm, SplineLSTM showcased promising
accuracy in terms of FOC estimation, when compared with
baseline regression ML approaches.

Grey Box modeling: Integrating the theoretical

FOC model with SplineLSTM: GB-SplineLSTM

Grey Box models (GBM), a term first introduced in (Bohlin
1991), are a combination of theoretical models (White Box
Models (WBM) and data driven approaches (Black Box Models
(BBM)). WBM's are usually simpler models in terms of
computational complexity and they attempt to calculate the
target variable of the approximation problem at hand from a
theoretical standpoint by applying the contextually appropriate
law of physics that governs each problem. In the context of this

paper we will refer to a WBM as Jwawm.

In their simplest implementation GBMs are attempting to
integrate prior knowledge extracted from a theoretical model
into a BBM.

They do this by incorporating two approaches:

e a naive approach (N-GBM) where the output of the
WBM is utilized as a new feature in the BBM training
process.

e a more advanced approach (A-GBM) where a
regularization term is introduced in the loss function of
the BBM, that attempts to encompass the knowledge
extracted from WBM in the weight vector w learned
from the BBM.

Our aim in this work is to combine the BBM proposed in
previous works with the theoretical backbone of Computational
Fluid Dynamics (CFD) and develop a more efficient GBM that
could better approximate the added resistance on the wetted area
of the vessel. We test the N-GBM approach by incorporating in
the training process of a BBM (SplineLSTM), the output of the
theoretical baseline model introduced in section. The N-GBM
approach allows the creation of a new dataset that takes the
following form:

. 1 In
. {< {fWBM(m)] ’y1>"”’ < [fWBM(m] ,yn>} ®)

This new dataset can then be employed to generate a BBM in

the form IBBM ([ma fwem (m )]) as presented in (Corradu et
al. 2017). One way to include the prior information from the
WBM is to replace the true label Yi in the dataset with the true

label Yi minus the output of the fwim(Zi) for the

corresponding input. With this approach the dataset D, takes
the following form:
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D, = (xl,yl - fWBM(ld)), ceey (l'n, Yn — fWBM(iEn))

)

and the minimization process of the GBM algorithm is
formulated as follows:

min Z[wz * feem(xi) — (yi — JCWBM(ﬂUim2
i=1 (10)

EXPERIMENTAL RESULTS

In this section we thoroughly describe the dataset utilized for
our experiments and we demonstrate the results corresponding
to different voyages conducted by a test vessel, comparing the
approximation capabilities of the proposed FOC models
described in previous sections versus the actual FOC acquired
from the on-board flowmeter sensor.

Dataset

The experiments presented in the context of this work were
conducted on one of Danaos container-ships in the context of
Carbon Intensity Index (CII) calculation - projection. The ship is
a 300-meter container vessel with a gross tonnage of 75200
tonnes, capable of transporting 6160 TEU (Twenty-foot
Equivalent Unit - unit of cargo capacity used for container ships
and terminals). The values collected correspond to a vast
majority of different round-trip voyages at different periods and
geographical locations (Fig. 7). As a whole, the extracted
dataset covers a time span of one year (December 2020 -
December 2021) comprising of approximately 4 * 10° data
points.

The ship was retrofitted with an open-loop exhaust gas cleaning
system (i.e., scrubber). Along with the main scrubber unit, a
dedicated software was also installed from the manufacturer to
measure and monitor several parameters, such as PH, turbidity,
SO,/CO, ratio, inlet and outlet exhaust temperatures. The
measurement of CO, and SO, emissions and the scrubber
efficiency were evaluated during a nine-day voyage from
Rotterdam to Kanakale.

During this period a team of environmental engineers, referred
to as the EE-team in the sequel, boarded the vessel and
conducted a preliminary research in the context of the EMERGE
EU project regarding emission control and assessment. More
specifically, they evaluated and compared the emissions
calculated using STEAM methodology with the emissions
acquired from on-board instruments. The results are further
analyzed and assessed next, by comparing the emissions
estimation, utilizing STEAM methodology, with the Grey Box
model proposed in the context of this paper.
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Figure 7: Route visualization
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Size).

Total Act FOC(MT/d) Total Pred FOC(MT/d) FOC Abs Diff(MT/d) FOC Perc Diff
%

SUEZ - ROTTERDAM 1100.62 1104.59 1.93 0.35
TANGER MED - SUEZ 4117 413.42 1.64 0.41
MUNDRA JEDDAH 437.04 439.38 1.28 0.53
LE HAVRE TANGER MED 284.26 288.81 1.02 1.57

Total 2233.62 2246.2 1.46 2.86

Table 2: Computational performance of the FOC approximation
model (GB-SplineLSTM)
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Figure 8: Actual FOC vs SplineLSTM vs GB-SplineLSTM predictions in 4 different voyages

GB-SplineSTM by evaluating its performance (mean absolute
difference between the actual and the model's predicted FOC) on
four different voyages conducted by DANAOS' test vessel. We
also demonstrate and compare the BBM’s (SplineLSTM)
performance. In the graphs depicted below we can observe for
different speed ranges (£ 0.5), the average deviation between
the actual FOC as measured by the flowmeter (in red) and the
predictions from SplineLSTM (in blue), GB-SplineLSTM (in
green), as well as the number of observations found during a
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oxygen (02), and SOx emissions were measured following the
ISO 8178-2 protocol. The applied methodology is the generic
STEAM (ship traffic emissions assessment method). Based on
the ships’ particulars (taken from HIS fairplay database) the
model evaluates initially the power consumption, load of the
engine, and the fuel consumption of the ship. Based on these
values, STEAM eventually evaluates the emissions of NOXx,
SOx, CO, CO,, as a function of time and location. Towards this
direction it was attempted to calculate FOC according to the
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STEAM model, where engine loads during voyages can be
determined with reasonable accuracy based on the ratio of ship
speed and the calculated resistance that the ship is required to
overcome at a specified speed. In the graph below (Fig. 9), we
depict the Specific Fuel Oil Consumption (SFOC) curve (green
line) for the particular vessel that was utilized to approximate
the total FOC and therefore the emissions on different engine
loads and speed ranges. A second order polynomial (blue line)
was “fitted” in order to be able to interpolate between arbitrary
M/E Loads and the corresponding SFOC values.

—— x?-0.51x+145.92,R?=0.98

SFOC [gr/kWh]
o= e
w W
= N

= e
N W
© o

128

30 40 50 60 70 80 90 100
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Figure 9: SFOC - M/E Load curve for the container-ship
test vessel

The mass flow rates of NO, SO, CO,, are calculated based on
engine power and SFOC, accounting for the combustion
stoichiometry and NO, chemistry, as follows:

m=PxSFOCx EF = FOC x EF  (10)

where m is the emissions mass flow rate (in 97 @15 /hour ),
P (engine power) is provided in KWW h, SFOC is provided in
gr/kWh and EF is the Emissions Factor presented in Table
3. EF calculation is thoroughly described in Appendix A.

Table 3: Emissions factor (EF) used for calculating CO2, NOx
and SOx

COy 3.114 (tn CO4/ tn fuel)
NO,, 0.092 (tn NO,, / tn fuel)
SO, | 2.023 x S mass fuel fraction in fuel (tn SO,/ tn S in fuel)

In Figure 10 we depict the emissions
co, (tnCO ) )/ (tn Fuel) measured from the HORIBA

instrument installed in the exhaust gas system of the vessel as
well as the calculated emissions with STEAM and
GB-SplineLSTM  approaches, during a voyage. Mean
Absolute Error (MAE) between the actual and the predicted
emissions utilizing STEAM and GB-SplineLSTM approach is
also demonstrated.
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—— Actual CO, measured with HORIBA instr. [Tn]
STEAM CO; [Tn], MAE: 1.44
+- GB-SplineLSTM CO; [Tn], MAE: 0.41
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Figure 10: Actual vs STEAM vs GB-SplineLSTM CO,

emissions

It is evident from the graph (Fig: 10) depicted above that the
physics informed neural network (GB-SplineLSTM) trained on
the tailor-made feature set, accounting for the operational as
well as the weather state of the en-route vessel, is able to
project CO, emissions in a much more accurate manner than
the STEAM methodology (0.41 MAE on ~250 hourly
observations (10 days), in contrast with 1.44 MAE for
STEAM). Representative examples of the computational
superiority of the GB-SplineLSTM versus the STEAM method
are also illustrated in Table 2 where its performance is
demonstrated through four different voyages involving 28k
observations (during 20 days). GB-SplineLSTM achieved
~97% mean accuracy in FOC estimation, alternatively an
overall 1.46 Metric Tonnes of fuel discrepancy on average
between the predicted and the actual FOC measured by the
flowmeter.

CONCLUSIONS

In the context of this work we demonstrated a prototype of a DT
framework that aims to facilitate the transition of the maritime
industry towards a sustainable, low emission and high efficiency
ship operation. This vision is realized through innovative ways
by encapsulating both Model Deployment and Decision Support
Systems (DSS) in a shared, distributed, centralized data space
KH (Knowledge Hub). The tools and services employed in the
KH were utilized accordingly to offer a comprehensive
approach to incorporate, analyze and further exploit the vast
amount of data collected in real time from the vessels in order to
build robust CO, predictors. These models assess the
environmental footprint of the vessel offering to the shipowner
an accurate insight regarding CII (Carbon Intensity Index), as
well as the possibility to act in a preventive way by pertaining a
tailor-made mitigation strategy to lower carbon dioxide
emissions for a particular vessel.

The approximation method introduced in this paper for FOC -
CO, estimation constitutes a novel approach that incorporates
standard marine engineering knowledge, into the architecture of
a deep learning model. In the experimental section of the paper
we showcased the approximation capabilities of this method
(GB-SplineLSTM) in a series of different voyages conducted by
the same container ship vessel. Finally, utilizing the well known
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and established STEAM methodology as a baseline we further
validated and enhanced the predictions acquired from the
proposed model, by comparing STEAM and GB-SplineLSTM
projections with the actual emissions measured by a research
team, on-board a container ship, in the context of an experiment
conducted for the EU project EMERGE.

One of the main directions to expand this work is to employ a
multi-objective WR (Weather Routing) algorithm utilizing the
proposed digital ecosystem for simulation, reasoning and
control-actuation  purposes. Furthermore exploiting the
distributed, streamlined architecture of the envisaged platform
we aim to collect and eventually store a broader category of
variables composed of vessel's particulars, building a physics
informed library for different types of vessels. This dataset can
then be employed in conjunction with incremental and transfer
learning algorithms between different fleets of vessels, methods
that aspire to tackle one of the main obstacles maritime
industries are facing nowadays, that is the lack of historical data
for many vessels.

APPENDIX

A. Emissions factors calculation

The emission factor, F' €02 for carbon dioxide (002 ),
depends on the molecular weight of carbon dioxide m( COZ),

the molecular weight of carbon m<C), the fuel carbon
concentration J CC and is given with the following formula:

m(COs) x fec
m(C')

FCOQ —
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