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Abstract—Route optimization has been a research topic for
many years in the maritime industry and it constitutes one of the
key components to improving energy efficiency and sustainability
in ship operations. This paper deals with the challenge of esti-
mating Fuel Oil Consumption (FOC) in the context of Weather
Routing (WR). Given a plethora of features collected from the
vessel’s Automatic Identification System (AIS) or on-board sensor
installations, we examine how a predictive FOC scheme can be
coupled with WR optimization algorithms in order to reduce
the vessel’s FOC, emissions, and the overall cost of a voyage. In
order to handle the amount of data required for FOC prediction,
we employ a streaming pipeline that harvests data in real-time
from different sources and processes them appropriately for
visualization, causal analysis, and forecasting purposes. In this
direction, we first conduct an exploratory analysis to examine and
unveil the importance and inter-association between the various
variables related to sea-keeping and weather features, in order
to utilize them effectively in the context of a FOC predictive
scheme. Furthermore, we introduce a novel recurrent neural
network architecture that approximates ideally the underlying
function describing the features and the vessel’s FOC by taking
into account historical data, and we showcase the results. Finally,
we demonstrate how the FOC prediction model can be coupled
with a WR algorithm to propose the optimal route for a vessel
in terms of FOC efficiency.

Keywords-big data collection, information processing, vessel
data, fuel oil consumption, weather routing optimization, recur-
rent neural networks

I. INTRODUCTION

The task of optimal route planning is crucial for the ship-
ping industry since it is strongly connected to the energy
consumption of sea vessels. Fuel Oil Consumption (FOC) is
highly affected by the speed of the vessel and the weather
conditions during a voyage. There exists a wealth of spatio-
temporal data related to the above problem, comprised of
static vessel specifics (e.g. deadweight (carrying capacity), hull
type, etc.), time-varying attributes outlining the vessel state
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(e.g. Revolutions or Rounds Per Minute of the Main Engine,
Speed Through Water, etc.) and local conditions (e.g. related
to weather and currents). The weather state constitutes the
spatial dimension that affects the oversea movement cost of
a ship. The respective temporal aspect relates to the environ-
mental and ship conditions at any moment of the ship’s route.
Combining knowledge from both dimensions can significantly
improve the FOC estimates and in turn, can lead to more
informed route optimization.

FOC is closely related to the rotational speed (i.e., rounds
per minute - RPM) of the main engine [1]. However, this
work focuses on the relation between spatio-temporaly de-
rived velocity measurements and weather features to employ
a FOC prediction model, without explicitly including RPM
information in the prediction. In other words, we utilize the
overground velocity of a ship V', which can be easily collected
by processing the < latitude, longitude > coordinates of the
vessel, using the Automatic Identification System (AIS) signal
that is transmitted every few seconds and weather features such
as wind speed, wind angle, etc., collected from a variety of
services. For this purpose, we extend our previous work [1]]
to take advantage of a rich feature set that contains, apart
from the vessel’s velocity, a multitude of weather features like
wind speed, relative wind angle, swell wave height, combined
wave height, etc. Our work can then be effectively utilized for
event recognition purposes (Post Voyage Analysis, Predictive
Maintenance, etc.) and by WR algorithms aiming to reduce
the emissions and maximize efficiency during a voyage. For
this purpose, the work presented in this paper is structured in
four parts, and demonstrates concisely the following:

« A big data management tool utilizing scheduling frame-
works (Apache Airflow) and streaming algorithms for
real-time vessel data collection, processing, and model



deployment.

o An exploratory analysis with a large-scale dataset, cor-
responding to a real container vessel, covering a time
span of approximately one year. To extract useful fea-
tures, preliminary research concerning the importance
and correlations between the variables that describe the
vessel’s voyage is conducted. We then propose a decision-
tree-based method to effectively clean the dataset from
noise corresponding to faulty measurements or negligent
maintenance.

« A novel Recurrent Neural Network utilizing the features
extracted in the previous part of the work, to approximate
the underlying function that describes the FOC of the
vessel.

« Lastly, a Weather Routing (WR) optimization algorithm
that integrates effectively the Recurrent Neural Network
proposed for FOC estimation, in the optimization proce-
dure.

Section that follows analyzes pertinent literature on

optimal route planning and consequently FOC estimation.

II. RELATED WORK

Optimization criteria in vessel routing include the minimiza-
tion of voyage time, FOC, or voyage risk. The approaches,
which have appeared so far in the literature, can be classified
into four broad categories:

o Vessel-based optimization, which aims to optimize a
given route with respect to vessel characteristics, e.g.,
vessel speed, main-engine rotational speed, draft, trim and
sea-keeping behavior: roll, heave and pitch motions; [2, 3]

o Environmental-based optimization, which aims at opti-
mizing a given route by taking into account environmen-
tal conditions, e.g., wind (speed, direction), wave (height,
frequency, direction), currents; [4} 5]

o Holistic optimization, which combines the two previous
approaches in a common context; [6} [7, [8]]

« Analytical approaches trying to tackle the problem with
the use of exact (NP-complete) and/or heuristic algo-
rithms like label-setting algorithms, non-linear integer
programming, or simulated annealing [9]].

In order to incorporate more constraints, several methods split
a vessel’s voyage into areas of critical interest, involving
for example zones of extreme weather conditions, emission
control areas (ECAs, SECAs), high-risk zones (piracy), etc.
Then, they seek for Pareto optimal solutions from a set of
routes that are optimal in terms of Expected Time of Arrival
(ETA), FOC, and safety or they use Genetic Algorithms [4] in
order to find the best route, as a composition of optimal route
segments. Methods like PSO (Particle Swarm Optimization)
[1O] are also employed in order to solve the multi-constraint,
non-linear optimization problem of optimal route planning.

The techniques employed in the literature for estimating
FOC based on vessel characteristics and/or environmental
conditions can be grouped into the following categories:

« Data-oriented approaches that combine vessel-trajectory

data, gathered from sensors, satellites (AIS data), or

Noon Reports, with Machine and Deep-Learning algo-
rithms. These techniques are ranging from simple Re-
gression analysis like Support Vector Regression, Lasso
Regression, and Polynomial Regression to ensemble non-
parametric schemes like Random Forest (RF) regression,
Decision Trees, or AdaBoost. Some studies have also
experimented with baseline sequential Artificial Neural
Networks (ANN) by tuning a number of hyperparameters
(learning rate, number of neurons, number of layers,
activation function). 11} [12].

o Approaches where machine learning (ML) methods (also
known as black-box models - BBM), are combined with
theoretical models (also known as white-box models -
WBM), such as the equations of motion of a freely
floating body moving with constant forward speed, in
order to increase the prediction accuracy. The proposed
models are known as grey-box models (GBM) [}, [2].

ANNs have been at the center of attention lately in many
research areas. As far as vessel FOC is concerned, not many
studies utilize the computational power of ANNs to approx-
imate FOC mainly due to the problem of missing historical
data. The studies found in pertinent literature dealing with
FOC estimation from a deep learning perspective are pre-
sented briefly below. Some studies experiment with baseline
sequential ANNs by applying a dropout in the weights in
order to achieve better generalization error [S]] or by tuning a
number of hyperparameters (learning rate, number of neurons,
number of layers, activation function) utilizing brute force
methods like randomized grid search [11, [13]. In [14] a
Recurrent NN is employed in order to estimate FOC but
without further research as far as the architecture, or the
generalization capabilities of the neural proposed.

Pertinent literature concerning applications and novelties
in the maritime sector neglects the importance of a big
data processing pipeline. This work deals with this omission
by employing a big data management tool, continuously
harvesting data related to the vessel’s operational stage of
life (voyage planning, cargo handling, etc). This is of high
importance for ship operations and maintenance procedures,
as the maritime sector has witnessed an exponential growth
in data availability over the past few years. In the following,
we present the workflow of a multi-purpose pipeline for data
collection-processing-storing and model deployment, adapted
to the needs of the maritime sector.

III. DATA AVAILABILITY AND PROCESSING
A. Features related to the prediction task

The motion of a ship through water requires energy to
overcome resistance, i.e. the force working against movement.
Therefore FOC is highly impacted by the total resistance of
the vessel as it moves forward. Total resistance of the vessel
incorporates three major components: frictional resistance,
wave resistance and air resistance.

The frictional resistance depends on the size of the wetted
area of the vessel. It represents often about 70-90% of the ship



total resistance for low-speed ships (bulk carriers and tankers),
and sometimes less than 40% for high-speed ships (containers
and passenger ships). Wave Resistance measures the effect
of waves and may rise up to 30% of the total resistance. The
characteristics of waves like their amplitude and wave length
are determined from the ocean-wave spectra along the voyage
path. Finally, air resistance normally represents about 2% of
the total resistance, but for loaded container ships in head
wind, it can be as much as 10%.

Based on the above standard marine engineering knowledge
we aim to utilize meaningful features that have a prominent
impact in the total resistance of the vessel like:

« Features that correspond to the frictional resistance and
can be utilized in the context of a Routing Optimization
algorithm, such as STW and Draft.

o Features that describe the wave resistance component,
such as Wave height/Direction, Wave Period, Swell Wave
Height/Direction, and Swell Period.

o Features that model the air resistance component,
such as Wind Speed/Direction, Combined Wind Wave
Height/Direction, and Current Speed/Direction.

All mentions to weather state variables corresponding to
the direction of the feature (Wind Direction, Swell Direction,
Wave Direction etc.), have been converted to relative direction
taking into account the heading of the vessel.

Table || depicts a detailed representation of the feature set
collected for FOC estimation purposes for each vessel and
their abbreviations.

Table I: The features of our dataset

id  Feature Abbreviation Me.a surement
Unit

1 Speed Through Water STW knots

2 Vessel Heading VSLy (degrees)

3 Mid Draft DRFT m

4 Wind Speed WS m/s

5 Wind Direction WD

6 Swell Wave Height SWH m

7 Swell Wave Direction SWD

8 Current Speed CS m

9 Current Direction CD

10 Visibility VIS m

11 Temperature TEMP C

12 Swell Period SWp sec

13 Wave Period WP sec

14 Combined Wave Height CWH m

15  Combined Wave Direction CWD

16 Mean Sea Level MSL

17 Wave Effect WAVE

18  Fuel Oil Consumption FOC 1t/min

19  Rounds/Minute of the Main Engine RPMmg

20  Power P kgw/h

B. Data collection / pre-processing pipeline

A high level visualisation of the processing pipeline is
depicted in Figure |I| and comprises several steps from data
collection and filtering to model building, evaluation, selection,
deployment and consequently the integration of the FOC
model in the WR algorithm.

Data are continuously collected from different sources (AILS,
Sensors, Noon Reports, Weather Service API’s) via a state-of-
the-art scheduling framework (Apache Airflow). The pipeline
harvests more than 100gb of data on a monthly basis, corre-
sponding to routes of different vessels, which are described
by the aforementioned variables.

This framework is utilized with the aim to build a fault-
tolerant, modular, and multi-purpose big data tool for the
maritime industry that is able to harvest data from different
sources and perform tasks such as Event Recognition, Causal
Analysis, Forecasting, and Incremental Training. In the scope
of this work, the framework is adapted accordingly to the task
of FOC training and estimation.

In the first steps, the framework integrates streaming al-
gorithms, in Apache Kafka and Spark, that optimize data
collection, processing, and storing. More specifically, the batch
streaming process is handled by Kafka Cluster, which allows
to balance the load of harvesting data streams in real-time from
AIS and on-board monitoring systems. In continuance, the data
are processed by exploiting the parallelization capabilities of
Apache Spark and are eventually stored in a centralized cloud-
based platform. The cleansed version of the data is consumed
by a variety of data-driven models that are trained on an ideal
feature set for the specified task (FOC estimation in this case),
which has been extracted in the previous step. After training
is complete, each model’s artifacts (hyper-parameters, training
error, evaluation error, convergence plots, size of dataset) are
automatically logged in a web-based micro-service (MLFlow)
to be easily accessible and comparable in order to query the
most accurate model in terms of validation error. The selected
model is wrapped as a web API service and is queried for
inference in real-time from external applications, which in
the scope of this work, is the routing optimization algorithm.
After selecting the appropriate FOC prediction model, new
data streams (i.e., from sensors, AIS) that are pushed to a
Kafka topic on a weekly basis, are fetched once a week from
the topic and used to update the model. The architecture of
this pipeline gives us the advantage to leverage the streaming
capabilities of Kafka, the task automation power of Airflow,
and the logging features of MLFlow — all structured and
orchestrated by a set of Docker containers.

The output of the pipeline can also be utilized to calculate
the Energy Efficiency Operational Index (EEOI), an indica-
tor that enables maritime industries to monitor the carbon
emissions of their fleets during a voyage. EEOI is the total
carbon emissions in a given time period per unit of revenue
tonne-miles. The mass flow rates of CO,, NOx and SOy are
calculated based on the engine Power (P - kW), the Specific
Fuel Oil Consumption (SFOC - gfiwnr), accounting for the
combustion stoichiometry and NOx chemistry as follows:

m=P SFOC EF=FOC EF (1)

where m is the emissions mass flow rate (in 9rams/hour), P is
the engine power, SFOC is the Specific Fuel Oil Consumption
and EF is the Emissions Factor presented in Table [[I}



Figure 1: The pipeline from data collection to WR optimization

CO» 3.114 (tnCO>/ tn fuel) . . )
NO, 0.092 (tiNOy 7 tn fuel) In Table Il we depict the experimental results from conduct

SOx | 2.023 X S mass fuel fraction in fuel (BOx/ tn S in fuel) ing regression analysis utilizing RF regression in order to rank

. i the importance of the aforementioned features in estimating
Table 1I: Emissions factor (EF) used for calculati®O,, roc.

NO, and SO,

C. Feature selection Table IlI: Feature ranking using RF

In order to unveil the relationships between the independent
variables as well as their importance and role in estimating

Ranking  Feature Importance

FOC, we conduct an initial exploratory analysis with Random ; \?VTSW 3-2‘3‘
Forest regression as the feature ranking algorithm. Then calcu- 3 DRAFT 0011
late the correlations between the most important features, and 4 VSLy 0.005
conclude to an ideal feature set that consists of independent 2 g\%’\H"BH g-gggi
variables that will be utilized accordingly in the context of 7 cs 0.004
FOC approximation. 8 WAVEy  0.0039
Decision Trees (DT) is a popular classi cation or regression 20 g\gl\lleD 8-8822
algorithm that takes into account the importance of features. 11 SWD 0.0028

More speci cally, the feature importance de nes the order
in which features are selected for splitting the initial set of
samples to subsets, from the tree root to the leafs. It is de ned

by the decrease in (tree) node impurity, which is weighted by gegjges selecting the most important (i.e. informative) fea-
the node probability. This probability is the number of S""mpletﬁres, we also aim to avoid selecting highly correlated ones.

that reach the node, divided by the total number of samplgg,; this purpose, we utilize the Spearman's Rank Correlation
Higher decreases in impurity denote more important featuregp ) coef cient, which assesses the strength and direction
Assuming only two child nodes (left, right) for each node, thgt the monotonic relationship between two ranked variables
node importance is given by the following equation: R(X;);R(Y;) using covariance and standard deviatigrand

Nij = WjCj  Wiert (j)Cett (j) Wiert (j)Crignt )  (2) 1S calculated as follows:

whereni; is the importance of nodg for featurei, w; is the

weighted number of samples reaching ngdand C; is the

impurity of nodej . Impurity is measured using Gini Index or

Entropy. R(X)R(Y) = COV(RIXIR(YD= ¢ (xy rev) 3
The Random Forest (RF) algorithm extends the concept

of Decision Trees, for high-dimensional data, by constructing

many individual decision trees during training, using each time

a different random subset of the initial set of features. It then

collectively examines the predictions of trees in order to make Assembling the ranking of features depicted in Table IlI

the nal prediction. Respectively, RF can be used to evaluasad the correlation depicted in Figure 2 using Algorithm 1 we

the importance of each feature across all the trees and provideclude with a subset of the initial feature set that combines

a more comprehensive ranking of feature importance. feature importance and independence.



The raw data of the vessel's speed and corresponding FOC
collected from the sensors, versus the mean values per speed
range ( 0:25V) and the 15 min rolling window averages are
depicted in Figure 4. Red circles are indicative of the number
of observations found for a particular range of speed.

Figure 2: Spearman correlation heatmap

Algorithm 1 Feature selection based on RF regression impor-

tance and Spearman Correlation. Figure 3: Raw data values VS Mean values VS Rolling

Require: featureSet F  top 10 from RF window average values

Require: featureSet F,  rest of features from RF

Require: correlations Corr  from SRC L .

Require: importances | mp  from RF Decision Trees (DTs) for data cleaningln the rst step of the

1: for eachf; 2F do data cleaning algorithm, we construct a Decision Tree (DT)

2 setF = Fnffig with three splits, corresponding to the three most important

j for ﬁagrfrk(f.fk)dg 05 then features, according to Section III-C, namely vessel speed
Iy . . .

5 if Imp[f;] < Imp [f«] then (STW), draft and wind speed. For the rst split of the DT

6: deletef; FromF root node we employ the vessel's speed distribution. The child

;1 elsese”‘emp = f nodes are further split using Draft, and the resulting leaf nodes

o: deletef, FromF contain:

10: setfiemp = fi

The average value of FOC for a particular speed, draft

m for ﬁaég‘rfrf(fz F'_‘f’o) - 05 then and wind speed combination
13 add?, 1o F andbreak The standard deviation of the FOC for this combination
14: if fromp = Ty then Number of observations found for this particular
15: break weather/vessel state combination
. Ret F .
1 eum_ The structure of the tree outlines the “acceptable” FOC
D. Data cleaning bounds for all the possible vessel/weather state combinations

Raw data, collected from the sensors of the vessel, @&xracted from a representative dataset recorded for approx-
in time-series (minutely) form and tend to be “noisy” (higimately one year. After the tree is constructed, it is utilized
variance, high standard deviation from the mean ) and in so@g a support decision tool in order to classify FOC values as
cases even erroneous. In order to remove noise, we emplogediers (i.e. lying outside of the 99% con dence interval) of
a t& Iter technique that effectively “cleaned” the data but atthe FOC values kept in the leaf nodes of the tree. With this
the same time kept the bulk of information needed for trainirgyocess we eliminate or replace FOC values from the initial
robust predictive models. training dataset that will most likely compromise the accuracy

Data ltering was implemented in two stages. First, asand the generalization capabilities of our FOC predictive
suming that the dataset follows a normal-like distributiorscheme in the long run.
we keep the data points that lie within the 99% con dence A visual abstraction of the decision tree for a sample path
interval around the mean. Then we apply an appropriatetprresponding to ranges dBTW [11-14 knots]! DRAFT
designed Decision Tree based algorithm in order to furthfg-11 m]! WINDSPEED [0 - 10 m/s] is depicted below
cancel the noise in FOC target distribution caused by the ovlongside with the calculation of the average and standard
meter sensor on the vessel. Then, we proceed to transform deviation of FOC and the number of instanca$ found for
dataset into 15-min rolling window averages in order to furthéhis particular path.
smooth out any spikes and outliers that occur in the feature set
from sensor installments. Note that the use of rolling window o
averages is consistent with the use of the FOC predictién FOC estimation model
model within a WR algorithm, in which decisions are based The dynamic estimation of FOC based on vessel state and
upon average values of FOC and not momentary consumptienvironmental conditions can be examined as a multivariate

IV. MODEL IMPLEMENTATION
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