
A big data approach for Fuel Oil Consumption
estimation in the maritime industry

Dimitrios Kaklis
Dep. of Informatics and Telematics

Harokopio University of Athens,
Danaos Research Center,

NCSR Demokritos
Athens, Greece

kaklis1992@gmail.com

Pavlos Eirinakis
Department of Industrial

Management & Technology
University of Piraeus

Piraeus, Greece
pavlose@unipi.gr

George Giannakopoulos
Institute of Informatics & Telecoms

NCSR Demokritos
Athens, Greece

ggianna@iit.demokritos.gr

Constantine Spyropoulos
Institute of Informatics & Telecoms

NCSR Demokritos
Athens, Greece

costass@iit.demokritos.gr

Takis J. Varelas
Danaos Research Center

Piraeus Greece
drc@danaos.gr

Iraklis Varlamis
Department of Informatics and Telematics

Harokopio University of Athens
Athens, Greece
varlamis@hua.gr

Abstract—Route optimization has been a research topic for
many years in the maritime industry and it constitutes one of the
key components to improving energy efficiency and sustainability
in ship operations. This paper deals with the challenge of esti-
mating Fuel Oil Consumption (FOC) in the context of Weather
Routing (WR). Given a plethora of features collected from the
vessel’s Automatic Identification System (AIS) or on-board sensor
installations, we examine how a predictive FOC scheme can be
coupled with WR optimization algorithms in order to reduce
the vessel’s FOC, emissions, and the overall cost of a voyage. In
order to handle the amount of data required for FOC prediction,
we employ a streaming pipeline that harvests data in real-time
from different sources and processes them appropriately for
visualization, causal analysis, and forecasting purposes. In this
direction, we first conduct an exploratory analysis to examine and
unveil the importance and inter-association between the various
variables related to sea-keeping and weather features, in order
to utilize them effectively in the context of a FOC predictive
scheme. Furthermore, we introduce a novel recurrent neural
network architecture that approximates ideally the underlying
function describing the features and the vessel’s FOC by taking
into account historical data, and we showcase the results. Finally,
we demonstrate how the FOC prediction model can be coupled
with a WR algorithm to propose the optimal route for a vessel
in terms of FOC efficiency.

Keywords-big data collection, information processing, vessel
data, fuel oil consumption, weather routing optimization, recur-
rent neural networks

I. INTRODUCTION

The task of optimal route planning is crucial for the ship-
ping industry since it is strongly connected to the energy
consumption of sea vessels. Fuel Oil Consumption (FOC) is
highly affected by the speed of the vessel and the weather
conditions during a voyage. There exists a wealth of spatio-
temporal data related to the above problem, comprised of
static vessel specifics (e.g. deadweight (carrying capacity), hull
type, etc.), time-varying attributes outlining the vessel state

(e.g. Revolutions or Rounds Per Minute of the Main Engine,
Speed Through Water, etc.) and local conditions (e.g. related
to weather and currents). The weather state constitutes the
spatial dimension that affects the oversea movement cost of
a ship. The respective temporal aspect relates to the environ-
mental and ship conditions at any moment of the ship’s route.
Combining knowledge from both dimensions can significantly
improve the FOC estimates and in turn, can lead to more
informed route optimization.

FOC is closely related to the rotational speed (i.e., rounds
per minute - RPM) of the main engine [1]. However, this
work focuses on the relation between spatio-temporaly de-
rived velocity measurements and weather features to employ
a FOC prediction model, without explicitly including RPM
information in the prediction. In other words, we utilize the
overground velocity of a ship V , which can be easily collected
by processing the < latitude, longitude > coordinates of the
vessel, using the Automatic Identification System (AIS) signal
that is transmitted every few seconds and weather features such
as wind speed, wind angle, etc., collected from a variety of
services. For this purpose, we extend our previous work [1]
to take advantage of a rich feature set that contains, apart
from the vessel’s velocity, a multitude of weather features like
wind speed, relative wind angle, swell wave height, combined
wave height, etc. Our work can then be effectively utilized for
event recognition purposes (Post Voyage Analysis, Predictive
Maintenance, etc.) and by WR algorithms aiming to reduce
the emissions and maximize efficiency during a voyage. For
this purpose, the work presented in this paper is structured in
four parts, and demonstrates concisely the following:

• A big data management tool utilizing scheduling frame-
works (Apache Airflow) and streaming algorithms for
real-time vessel data collection, processing, and model



deployment.
• An exploratory analysis with a large-scale dataset, cor-

responding to a real container vessel, covering a time
span of approximately one year. To extract useful fea-
tures, preliminary research concerning the importance
and correlations between the variables that describe the
vessel’s voyage is conducted. We then propose a decision-
tree-based method to effectively clean the dataset from
noise corresponding to faulty measurements or negligent
maintenance.

• A novel Recurrent Neural Network utilizing the features
extracted in the previous part of the work, to approximate
the underlying function that describes the FOC of the
vessel.

• Lastly, a Weather Routing (WR) optimization algorithm
that integrates effectively the Recurrent Neural Network
proposed for FOC estimation, in the optimization proce-
dure.

Section II that follows analyzes pertinent literature on
optimal route planning and consequently FOC estimation.

II. RELATED WORK

Optimization criteria in vessel routing include the minimiza-
tion of voyage time, FOC, or voyage risk. The approaches,
which have appeared so far in the literature, can be classified
into four broad categories:

• Vessel-based optimization, which aims to optimize a
given route with respect to vessel characteristics, e.g.,
vessel speed, main-engine rotational speed, draft, trim and
sea-keeping behavior: roll, heave and pitch motions; [2, 3]

• Environmental-based optimization, which aims at opti-
mizing a given route by taking into account environmen-
tal conditions, e.g., wind (speed, direction), wave (height,
frequency, direction), currents; [4, 5]

• Holistic optimization, which combines the two previous
approaches in a common context; [6, 7, 8]

• Analytical approaches trying to tackle the problem with
the use of exact (NP-complete) and/or heuristic algo-
rithms like label-setting algorithms, non-linear integer
programming, or simulated annealing [9].

In order to incorporate more constraints, several methods split
a vessel’s voyage into areas of critical interest, involving
for example zones of extreme weather conditions, emission
control areas (ECAs, SECAs), high-risk zones (piracy), etc.
Then, they seek for Pareto optimal solutions from a set of
routes that are optimal in terms of Expected Time of Arrival
(ETA), FOC, and safety or they use Genetic Algorithms [4] in
order to find the best route, as a composition of optimal route
segments. Methods like PSO (Particle Swarm Optimization)
[10] are also employed in order to solve the multi-constraint,
non-linear optimization problem of optimal route planning.

The techniques employed in the literature for estimating
FOC based on vessel characteristics and/or environmental
conditions can be grouped into the following categories:

• Data-oriented approaches that combine vessel-trajectory
data, gathered from sensors, satellites (AIS data), or

Noon Reports, with Machine and Deep-Learning algo-
rithms. These techniques are ranging from simple Re-
gression analysis like Support Vector Regression, Lasso
Regression, and Polynomial Regression to ensemble non-
parametric schemes like Random Forest (RF) regression,
Decision Trees, or AdaBoost. Some studies have also
experimented with baseline sequential Artificial Neural
Networks (ANN) by tuning a number of hyperparameters
(learning rate, number of neurons, number of layers,
activation function). [11, 12].

• Approaches where machine learning (ML) methods (also
known as black-box models - BBM), are combined with
theoretical models (also known as white-box models -
WBM), such as the equations of motion of a freely
floating body moving with constant forward speed, in
order to increase the prediction accuracy. The proposed
models are known as grey-box models (GBM) [1, 2].

ANNs have been at the center of attention lately in many
research areas. As far as vessel FOC is concerned, not many
studies utilize the computational power of ANNs to approx-
imate FOC mainly due to the problem of missing historical
data. The studies found in pertinent literature dealing with
FOC estimation from a deep learning perspective are pre-
sented briefly below. Some studies experiment with baseline
sequential ANNs by applying a dropout in the weights in
order to achieve better generalization error [5] or by tuning a
number of hyperparameters (learning rate, number of neurons,
number of layers, activation function) utilizing brute force
methods like randomized grid search [11, 13]. In [14] a
Recurrent NN is employed in order to estimate FOC but
without further research as far as the architecture, or the
generalization capabilities of the neural proposed.

Pertinent literature concerning applications and novelties
in the maritime sector neglects the importance of a big
data processing pipeline. This work deals with this omission
by employing a big data management tool, continuously
harvesting data related to the vessel’s operational stage of
life (voyage planning, cargo handling, etc). This is of high
importance for ship operations and maintenance procedures,
as the maritime sector has witnessed an exponential growth
in data availability over the past few years. In the following,
we present the workflow of a multi-purpose pipeline for data
collection-processing-storing and model deployment, adapted
to the needs of the maritime sector.

III. DATA AVAILABILITY AND PROCESSING

A. Features related to the prediction task

The motion of a ship through water requires energy to
overcome resistance, i.e. the force working against movement.
Therefore FOC is highly impacted by the total resistance of
the vessel as it moves forward. Total resistance of the vessel
incorporates three major components: frictional resistance,
wave resistance and air resistance.

The frictional resistance depends on the size of the wetted
area of the vessel. It represents often about 70-90% of the ship



total resistance for low-speed ships (bulk carriers and tankers),
and sometimes less than 40% for high-speed ships (containers
and passenger ships). Wave Resistance measures the effect
of waves and may rise up to 30% of the total resistance. The
characteristics of waves like their amplitude and wave length
are determined from the ocean-wave spectra along the voyage
path. Finally, air resistance normally represents about 2% of
the total resistance, but for loaded container ships in head
wind, it can be as much as 10%.

Based on the above standard marine engineering knowledge
we aim to utilize meaningful features that have a prominent
impact in the total resistance of the vessel like:

• Features that correspond to the frictional resistance and
can be utilized in the context of a Routing Optimization
algorithm, such as STW and Draft.

• Features that describe the wave resistance component,
such as Wave height/Direction, Wave Period, Swell Wave
Height/Direction, and Swell Period.

• Features that model the air resistance component,
such as Wind Speed/Direction, Combined Wind Wave
Height/Direction, and Current Speed/Direction.

All mentions to weather state variables corresponding to
the direction of the feature (Wind Direction, Swell Direction,
Wave Direction etc.), have been converted to relative direction
taking into account the heading of the vessel.

Table I depicts a detailed representation of the feature set
collected for FOC estimation purposes for each vessel and
their abbreviations.

Table I: The features of our dataset

id Feature Abbreviation Measurement
Unit

1 Speed Through Water STW knots
2 Vessel Heading VSLH

◦ (degrees)
3 Mid Draft DRFT m
4 Wind Speed WS m/s
5 Wind Direction WD ◦

6 Swell Wave Height SWH m
7 Swell Wave Direction SWD ◦

8 Current Speed CS m
9 Current Direction CD ◦

10 Visibility VIS m
11 Temperature TEMP ◦C
12 Swell Period SWP sec
13 Wave Period WP sec
14 Combined Wave Height CWH m
15 Combined Wave Direction CWD ◦

16 Mean Sea Level MSL
17 Wave Effect WAVE

18 Fuel Oil Consumption FOC lt/min
19 Rounds/Minute of the Main Engine RPMME

20 Power P kgw/h

B. Data collection / pre-processing pipeline

A high level visualisation of the processing pipeline is
depicted in Figure 1 and comprises several steps from data
collection and filtering to model building, evaluation, selection,
deployment and consequently the integration of the FOC
model in the WR algorithm.

Data are continuously collected from different sources (AIS,
Sensors, Noon Reports, Weather Service API’s) via a state-of-
the-art scheduling framework (Apache Airflow). The pipeline
harvests more than 100gb of data on a monthly basis, corre-
sponding to routes of different vessels, which are described
by the aforementioned variables.

This framework is utilized with the aim to build a fault-
tolerant, modular, and multi-purpose big data tool for the
maritime industry that is able to harvest data from different
sources and perform tasks such as Event Recognition, Causal
Analysis, Forecasting, and Incremental Training. In the scope
of this work, the framework is adapted accordingly to the task
of FOC training and estimation.

In the first steps, the framework integrates streaming al-
gorithms, in Apache Kafka and Spark, that optimize data
collection, processing, and storing. More specifically, the batch
streaming process is handled by Kafka Cluster, which allows
to balance the load of harvesting data streams in real-time from
AIS and on-board monitoring systems. In continuance, the data
are processed by exploiting the parallelization capabilities of
Apache Spark and are eventually stored in a centralized cloud-
based platform. The cleansed version of the data is consumed
by a variety of data-driven models that are trained on an ideal
feature set for the specified task (FOC estimation in this case),
which has been extracted in the previous step. After training
is complete, each model’s artifacts (hyper-parameters, training
error, evaluation error, convergence plots, size of dataset) are
automatically logged in a web-based micro-service (MLFlow)
to be easily accessible and comparable in order to query the
most accurate model in terms of validation error. The selected
model is wrapped as a web API service and is queried for
inference in real-time from external applications, which in
the scope of this work, is the routing optimization algorithm.
After selecting the appropriate FOC prediction model, new
data streams (i.e., from sensors, AIS) that are pushed to a
Kafka topic on a weekly basis, are fetched once a week from
the topic and used to update the model. The architecture of
this pipeline gives us the advantage to leverage the streaming
capabilities of Kafka, the task automation power of Airflow,
and the logging features of MLFlow — all structured and
orchestrated by a set of Docker containers.

The output of the pipeline can also be utilized to calculate
the Energy Efficiency Operational Index (EEOI), an indica-
tor that enables maritime industries to monitor the carbon
emissions of their fleets during a voyage. EEOI is the total
carbon emissions in a given time period per unit of revenue
tonne-miles. The mass flow rates of CO2, NOx and SOx are
calculated based on the engine Power (P - kW ), the Specific
Fuel Oil Consumption (SFOC - gr/kWhr), accounting for the
combustion stoichiometry and NOx chemistry as follows:

m = P ∗ SFOC ∗ EF = FOC ∗ EF (1)

where m is the emissions mass flow rate (in grams/hour), P is
the engine power, SFOC is the Specific Fuel Oil Consumption
and EF is the Emissions Factor presented in Table II.
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Figure 1: The pipeline from data collection to WR optimization

CO2 3.114 (tn CO2/ tn fuel)
NOx 0.092 (tn NOx / tn fuel)
SOx 2.023 x S mass fuel fraction in fuel (tn SOx/ tn S in fuel)

Table II: Emissions factor (EF) used for calculating CO2,
NOx and SOx

C. Feature selection

In order to unveil the relationships between the independent
variables as well as their importance and role in estimating
FOC, we conduct an initial exploratory analysis with Random
Forest regression as the feature ranking algorithm. Then calcu-
late the correlations between the most important features, and
conclude to an ideal feature set that consists of independent
variables that will be utilized accordingly in the context of
FOC approximation.

Decision Trees (DT) is a popular classification or regression
algorithm that takes into account the importance of features.
More specifically, the feature importance defines the order
in which features are selected for splitting the initial set of
samples to subsets, from the tree root to the leafs. It is defined
by the decrease in (tree) node impurity, which is weighted by
the node probability. This probability is the number of samples
that reach the node, divided by the total number of samples.
Higher decreases in impurity denote more important features.
Assuming only two child nodes (left, right) for each node, the
node importance is given by the following equation:

nij = wjCj − wleft(j)Cleft(j) − wleft(j)Cright(j) (2)

where nij is the importance of node j for feature i, wj is the
weighted number of samples reaching node j and Cj is the
impurity of node j. Impurity is measured using Gini Index or
Entropy.

The Random Forest (RF) algorithm extends the concept
of Decision Trees, for high-dimensional data, by constructing
many individual decision trees during training, using each time
a different random subset of the initial set of features. It then
collectively examines the predictions of trees in order to make
the final prediction. Respectively, RF can be used to evaluate
the importance of each feature across all the trees and provide
a more comprehensive ranking of feature importance.

In Table III we depict the experimental results from conduct-
ing regression analysis utilizing RF regression in order to rank
the importance of the aforementioned features in estimating
FOC.

Table III: Feature ranking using RF

Ranking Feature Importance

1 STW 0.94
2 WS 0.13
3 DRAFT 0.011
4 VSLH 0.005
5 COMBH 0.0058
6 SWH 0.0054
7 CS 0.004
8 WAVEH 0.0039
9 SWP 0.0036
10 COMBD 0.0032
11 SWD 0.0028

Besides selecting the most important (i.e. informative) fea-
tures, we also aim to avoid selecting highly correlated ones.
For this purpose, we utilize the Spearman’s Rank Correlation
(SRC) coefficient, which assesses the strength and direction
of the monotonic relationship between two ranked variables
R(Xi), R(Yi) using covariance and standard deviation σ, and
is calculated as follows:

ρR(X),R(Y ) = cov(R(X),R(Y ))/σR(X)σR(Y ) (3)

Assembling the ranking of features depicted in Table III
and the correlation depicted in Figure 2 using Algorithm 1 we
conclude with a subset of the initial feature set that combines
feature importance and independence.
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Figure 2: Spearman correlation heatmap

Algorithm 1 Feature selection based on RF regression impor-
tance and Spearman Correlation.

Require: featureSet F ← top 10 from RF
Require: featureSet Fr ← rest of features from RF
Require: correlations Corr ← from SRC
Require: importances Imp← from RF

1: for each fi ∈ F do
2: set F̄ = F \ {fi}
3: for each fk ∈ F̄ do
4: if Corr(fi, fk) > 0.5 then
5: if Imp[fi] < Imp[fk] then
6: delete fi From F
7: set ftemp = fk
8: else
9: delete fk From F

10: set ftemp = fi

11: for each fr ∈ Fr do
12: if Corr(ftemp, fr) < 0.5 then
13: add fr to F and break
14: if ftemp = fk then
15: break
16: Return F

D. Data cleaning

Raw data, collected from the sensors of the vessel, are
in time-series (minutely) form and tend to be “noisy” (high
variance, high standard deviation from the mean ) and in some
cases even erroneous. In order to remove noise, we employed
a fit & filter technique that effectively “cleaned” the data but at
the same time kept the bulk of information needed for training
robust predictive models.

Data filtering was implemented in two stages. First, as-
suming that the dataset follows a normal-like distribution,
we keep the data points that lie within the 99% confidence
interval around the mean. Then we apply an appropriately
designed Decision Tree based algorithm in order to further
cancel the noise in FOC target distribution caused by the flow-
meter sensor on the vessel. Then, we proceed to transform our
dataset into 15-min rolling window averages in order to further
smooth out any spikes and outliers that occur in the feature set
from sensor installments. Note that the use of rolling window
averages is consistent with the use of the FOC prediction
model within a WR algorithm, in which decisions are based
upon average values of FOC and not momentary consumption.

The raw data of the vessel’s speed and corresponding FOC
collected from the sensors, versus the mean values per speed
range (±0.25V ) and the 15 min rolling window averages are
depicted in Figure 4. Red circles are indicative of the number
of observations found for a particular range of speed.

Figure 3: Raw data values VS Mean values VS Rolling
window average values

Decision Trees (DTs) for data cleaning. In the first step of the
data cleaning algorithm, we construct a Decision Tree (DT)
with three splits, corresponding to the three most important
features, according to Section III-C, namely vessel speed
(STW), draft and wind speed. For the first split of the DT
root node we employ the vessel’s speed distribution. The child
nodes are further split using Draft, and the resulting leaf nodes
contain:

• The average value of FOC for a particular speed, draft
and wind speed combination

• The standard deviation of the FOC for this combination
• Number of observations found for this particular

weather/vessel state combination
The structure of the tree outlines the “acceptable” FOC

bounds for all the possible vessel/weather state combinations
extracted from a representative dataset recorded for approx-
imately one year. After the tree is constructed, it is utilized
as a support decision tool in order to classify FOC values as
outliers (i.e. lying outside of the 99% confidence interval) of
the FOC values kept in the leaf nodes of the tree. With this
process we eliminate or replace FOC values from the initial
training dataset that will most likely compromise the accuracy
and the generalization capabilities of our FOC predictive
scheme in the long run.

A visual abstraction of the decision tree for a sample path
corresponding to ranges of: STW [11-14 knots] → DRAFT
[6-11 m] → WINDSPEED [0 - 10 m/s] is depicted below
alongside with the calculation of the average and standard
deviation of FOC and the number of instances (n) found for
this particular path.

IV. MODEL IMPLEMENTATION

A. FOC estimation model

The dynamic estimation of FOC based on vessel state and
environmental conditions can be examined as a multivariate



Figure 4: Decision Tree example for data cleaning

time-series prediction problem that takes into account the
actual values as well as their recent history, and captures
the information hidden in the values’ evolution over time.
Based on the superiority of Long Short-Term Memory Neural
Network (LSTM) models over traditional time-series predic-
tion methods (e.g., ARIMA) [15], LTSMs are chosen as the
basis of our solution. The initial feature set, collected by AIS
and sensor installments comprises the vessel speed, draft and
heading and some basic weather features such as wind speed
and direction. In order to take maximum advantage of this
limited feature set, we employ a novel LSTM architecture,
using a pre-training step that extracts information from the
original features, using spline-based regression [16]. In what
follows, we describe how LSTM is used for FOC estimation
and detail the proposed SplineLSTM model and its novel
aspects.

1) The basic LSTM for FOC estimation: LSTM is a
variation of traditional Recurrent Neural Network (RNN)
architecture [17], which has been extensively used for time-
series prediction tasks [18]. Unlike standard feed forward
neural networks, LSTM also contains feedback connections
and can process single data points (e.g. images) as well
as entire sequences of data (e.g., speech, video or object
trajectories). Compared to RNNs, Hidden Markov Models and
other sequence learning methods, LSTMs are not so sensitive
to the length of gaps between important events in a time series,
which makes them more preferable in numerous applications.
To this end, we adopt an LSTM architecture for the prediction
of FOC values.

The input of the LSTM network at timestep tu comprises N
time-series, one for each feature of interest (speed through wa-
ter, wind speed, wind angle etc) and in order to use the recent
history of values in each feature, we employ a fixed-length
time-window (time-lag of length m). As a consequence, the
window contains the values for each time step ti ∈ [tk−m, tu]
for the weather and vessel state features that are used for the
estimation of FOC at time tu, resulting in N time-series,
of length m+ 1, of the form [FN(u−m), ..., FN(u−1), FN(u)],
for each feature FN . Given a sequence of consecutive time-

steps, and a multivariate feature set, we get the following
correspondence between the input and the output of the LSTM:


[F1(u−m) . . . Fj(u−m) . . . FN(u−m)]

...
[F1(i) . . . Fj(i) . . . FN(i)]

...
[F1(u) . . . Fj(u) . . . FN(u)]

 −→

FOCu−m

...
FOCi

...
FOCu

 , (4)

where N is the number of monitored features (and respectively
of the time-series fed to the LSTM), m is the window length,
and Fj(i) is the value of feature j ∈ [1, N ] at timestamp ti.
FOCi is the FOC value that we want to predict.

2) SplineLSTM: In a previous work [1], we demonstrated
the approximation capabilities of spline-based regression mod-
els [19] and their ability to adapt to the linear and non-
linear patterns that exist between dependent and independent
variables, as those that describe the underlying function that
approximates FOC. A spline regression of degree d partitions
the input space in sub-domains separated by k knots. Each
domain is approximated by different polynomial of degree up
to d. Splines of order d have continuous d − 1 derivatives,
a property that balances the trade off between goodness-of-
fit and smoothness of the spline interpolant, and results in a
predictive scheme with good generalization capabilities.

An example of spline regression and the polynomials that
are constructed in training time given a multi-variate feature
set: x1, . . . , xN and a target variable y is described as follows:

y = f(x) =


H1i(x1i, ..., x1Ni)b1i, x1i ∈ [ti, ti +∆t]
...
Hki(xki...xkNi

)bki, xki ∈ [ti + (k − 1)∆t, ti + k∆t],

0, otherwise

(5)
where ti is the corresponding time-step of observation xi, k
is the number of knots of the pre-trained SplineModeli, H(x)
are piece-wise continuous hinge functions of order d ≥ 1
defined on subsequent time intervals, and bin are the regression
coefficients of the pre-trained spline models, where i ∈ [1, k].

The proposed spline-based LSTM uses the knowledge
gained in the pre-spline training step for providing an extended
input vector of size k+N in each case, where k is the number
of knots of the respective spline function. The proposed Spline
network evaluates each feature xi on the corresponding hinge
function Hi generated from Spline regression creating a k
dimensional vector that quantifies the impact of each feature
in FOC estimation. In the Spline network we evaluate each
feature xi on the corresponding hinge function Hi generated
from Spline regression creating a k dimensional vector that
quantifies the impact of each feature in estimating FOC. The
basic extension compared to a conventional LSTM is that
by introducing this k-dimensional spline-informed vector the
network is able to take into account not only the temporal
but also the spatial structure of the features. This approach
guides the network to form spatial-aware embeddings that help



the model learn a different set of functions for different sub-
domains of interest.

With this transformation, the LSTM looks back m time steps
to form the hidden state units ht−1. The hidden state acts as
the NN memory, for it holds information on data the network
has seen before. The input vector is constructed by moving
time windows that comprise:

• (F1, . . . , FN ) values,
• k values generated from evaluating our feature set
(F1, . . . , FN ) values at each of the k knots of the pre-
trained Spline model, and

• the corresponding FOC values.
The resulting input vector at time instance ti takes the form:


[F1(1), . . . , FN(1), H1(1)(F1), . . . ,H1(k)(F1′)]

...
[F1(i), . . . , FN(i), Hi(1)(Fi), . . . ,Hi(k)(Fi′)]

...
[F1(m), . . . , FN(m), Hm(1)(Fm), . . . ,Hm(k)(Fm′)]

→ FOCi (6)

where m is the number of the previous time steps used to
form the initial 2D vector of velocity and its mean value, m
is the step used to set-up the time window vectors for the
hidden LSTM units and Hik is the i-th Hinge function of the
pre-trained spline regression model.

V. EXPERIMENTAL RESULTS

In this section we will first demonstrate results correspond-
ing to different voyages of a real container vessel utilizing
the proposed FOC estimation model. Furthermore, we briefly
introduce the WR algorithm that has been utilized to validate
our approach by utilizing the SplineLSTM neural network as
a cost function to find the most rewarding alternative way-
points in terms of FOC. Finally, we showcase the results and
the potential fuel savings during a voyage by utilising the WR
algorithm as a decision support tool in order to propose an
alternate route.

A. Dataset

All the experiments were conducted with real data, from
a dataset of an existing container ship vessel with a carrying
capacity of 3000 TEUs 1. The values collected correspond
to a vast majority of different round-trip voyages at different
periods and geographical locations. As a whole, the dataset ex-
tracted for the purpose of this work, covers a time span of one
year (December 2019 - December 2020) with approximately
4 ∗ 105 data points.

In order to examine the statistical significance of our results,
we created 10 statistically independent subsets extracted from
different time periods of approximately 5 ∗ 103 observations
each that cover 84 hours or 3.5 days of the vessel’s trip.

From these datasets, 80% was used for training and the rest
for testing. Statistical independence was preserved between
different datasets with the use of the Kolmogorov-Smirnov test

1(Twenty-foot Equivalent Unit - unit of cargo capacity used for container
ships and terminals)

(KS-test). This is a two-sided test for the null hypothesis that
2 independent samples are drawn from the same continuous
distribution. The dataset used in the context of this work is
available, in sanitized form, upon request to the first of authors.
It contains the values for the features described in Table I, and
their corresponding timestamp.

B. SplineLSTM Performance in different voyages

The next step is to evaluate the approximation capabilities
of the proposed LSTM-based FOC predictive model. This is
performed for four different voyages extracted from the initial
test set. The voyages correspond to different locations, time
periods and weather conditions for the same container ship.

To demonstrate the results, we depict, in Figure 5 and Table
IV, the deviation between the actual and the predicted FOC
measured in Metric Tones for one day (MT/day), per speed(V)
range (±0.5V ). Bar size indicates the number of observations
found for a particular speed range.
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Figure 5: SplineLSTM performance in 4 different voyages of
the same container ship

Table IV: Computational performance of the FOC-model
(SplineLSTM)

Act. FOC Pred. FOC Abs. Diff Perc. Diff
(%)

HOUSTON - MOBILE 71.84 72.68 0.84 1.16

PANAMA - HOUSTON 360.24 362.04 1.8 0.5

PUSAN - PANAMA 1725.14 1714.98 10.16 0.59

TAMPA - TANGER MED 774.53 771.45 3.08 0.4

Total 2921.57 2931.94 10.56 0.36

Computational performance superiority of the SplineLSTM
model, as presented above, allows us to utilize it in the context
of a weather routing optimization algorithm.



C. Coupling SplineLSTM with a WR algorithm

To validate further our approach in the context of a real
world application, SplineLSTM has been coupled with a WR
algorithm to support vessel routing decisions towards the
reduction of FOC. The WR algorithm that has been utilized
is based on the isochrone principle [20]. It builds upon a
predetermined basic route; this route can be the original route
planned by the vessel’s master or provided by a basic routing
algorithm. In the context of this work an initial route was
employed on the basis of shortest path principles. The original
(initial) route is then broken into segments, with respect to
a given time step (indicating the master’s routing decision
horizon, e.g., every 6 hours), and a graph is built around it
that enables course and speed deviations, while “following”
the direction of the vessel’s original course. To this end, for
each node of the original route, a set of nodes is added in a
“parallel” fashion on both sides of the route (i.e., parallel to
the direction of the original route). Edges are added between
all nodes of subsequent sets. Note that nodes that are identified
to be on land as well as edges that go above land segments
are naturally excluded from the graph.

Once the graph is created (Figure 6), SplineLSTM is used
to obtain the FOC of each edge of the graph, i.e., of each
corresponding sea route, given the vessel’s STW, draft and
corresponding weather conditions along that sea route. After
scoring each sea route (i.e., graph edge), a variation of
Dijkstra’s algorithm for the shortest path problem is utilized
to obtain the route that minimizes the total route FOC (i.e.,
considering the calculated FOC of each edge as its corre-
sponding “edge weight” or “distance”). Note that since the
algorithm is isochrone, the produced route also satisfies any
constraints concerning the time of arrival (if any). Note also
that the decision variables for the WR algorithm are only the
STW and the vessel’s direction, since these are the aspects
that the vessel’s master can control. Obviously, any change
in the vessel’s speed affects directly FOC (since STW is a
basic feature of the corresponding model). However, changes
in speed and direction also affect FOC indirectly, since they
alter the spatio-temporal state of the vessel and hence the
corresponding weather conditions.

Figure 6: Graph construction comprised of alternative way-
points(red circles) for an example route

VI. WEATHER ROUTING OPTIMIZATION EXPERIMENTAL
RESULTS

In this section we demonstrate results of the WR opti-
mization algorithm presented in section V-C. We compare
the total FOC of an initial transatlantic voyage conducted
by the vessel’s master, with the suggested optimized route
produced from the WR algorithm by utilizing SplineLSTM
model. Furthermore we calculate the total distance travelled,
the estimated time of arrival, the average speed and the emis-
sions emitted for the two alternative routes by incorporating
Table II, and we exhibit the results in Table V. Consecutively
we demonstrate the weather (wind speed (m/s)) of the initial
and the optimized route per hour, in Figure 8.

Figure 7: Initial (blue) and Optimized (red) route for one leg:
TAMPA (FLORIDA U.S) - TANGER MED (MOROCCO)

Voyage Date Latitude Longitude
Departure 2019-09-21 27.7◦ N 82.5◦ W

Arrival 2019-10-03 35.8◦ N 6◦ W

BASIC COMPARISON Actual route estimation Optimized route estimation
Distance (nm) 4787.4 4369.36
Time (hours) 289.97 264.63

Avg Speed (kt) 16.52 16.51
Total FOC (MT) 774.53 759.97

CO2 (MT) 2411.88 2366.54

Table V: Estimation based on Weather Service (NOAA)2data

VII. CONCLUSIONS AND NEXT STEPS

This work introduced a framework for real time data col-
lection and processing, related to vessels operations, in order
to employ a range of multi-purpose data driven schemes.
This dynamic environment aspires to support in decision
making different professions related to ship operations and
maintenance, like brokers, operators, marine engineers, the
crew of the vessel, etc.

In this paper the pipeline was adapted accordingly, firstly to
extract an ideal feature set and then to employ a robust Deep
Learning model (SplineLSTM) for FOC estimation purposes.

In continuance we showcased the approximation capabilities
of the SplineLSTM model and we demonstrated the environ-
mental footprint of the joint SplineLSTM-WR optimization
algorithm by proposing an alternative route with lower FOC,
and therefore reduced CO2 emissions for a particular voyage.

2weather features where acquired from National Oceanic and Atmo-
spheric Administration (NOAA)
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Figure 8: Weather comparison (wind speed) for the initial and
optimized route of Figure 7

One of the main directions to expand this work, is to utilize
the proposed framework to collect and eventually store a
broader category of variables comprised of vessel’s particulars
(propeller diameter, hull geometry, main engine type, fuel type
etc). This will aid us to build a physics informed library for
different types of vessels. This dataset can then be employed
for incremental and transfer learning purposes between differ-
ent fleets of vessels, methods that aspire to tackle one of the
main obstacles maritime industries are facing nowadays, that
is the lack of historical data for many vessels.
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