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Abstract—Estimating the Fuel Oil Consumption (FOC) of a
vessel is a critical task for the maritime industry, affecting
route planning and the overall management of the vessel’s
operation and maintenance. Consumption is strongly coupled
with the operation of the Main Engine (ME), but also with the
environmental conditions (i.e., weather, ocean-energy spectrum)
and the hydrodynamic features (i.e., resistance, propulsion) of
the vessel. Current research shows that a multitude of features
collected either from the AIS (Automatic Identification System)
or on-board sensors can assist to the continuous prediction of
FOC. Even when a FOC estimation model is perfectly trained
on a specific vessel, its performance may degrade over time,
when new weather conditions apply or when the hydrodynamics
of the vessel change over time, due to fouling, aging and
negligent maintenance. This work presents an online learning
framework that employs a custom encoding-decoding Neural
Network scheme and real-time data from various on-board
sensors, to appropriately update FOC estimation models. The
model is able to adapt to newly acquired data using a temporally-
aware batch scheme, that samples from the initial training set
using a custom auto-encoder.

Index Terms—online learning, concept shift, FOC estimation,
multivariate spline regression, LSTM

I. INTRODUCTION

The survey of related literature on the estimation of vessel
operational costs and more specifically of Fuel Oil Consump-
tion reveals a shift from mathematical (white box) models
to more data driven approaches (black box models), which
combine big data and machine learning in order to train the
appropriate predictive models [2]. Even when these models are
fine-tuned on a specific vessel, or type of vessel, with respect
to its hydrodynamics performance and operational profile,
their performance quickly degrades because of the changing
conditions (weather, load, vessel status etc.) that occur during
the vessel life-cycle. These changes may trigger completely
different prediction tasks that the trained model has never
experienced before, resulting in poor performance.

The ability to learn different tasks in a sequential manner is
crucial for neural networks and it has been a research topic for

many years. The problem arises from the fact that it is difficult
to incrementally train a neural network to learn a function
that is approximated from non-stationary data generated from
different distributions. This happens mainly because Neural
Networks, especially complex ones, tend to over-fit on the
data patterns they see more frequently and ”forget” others, a
problem that leads to poor generalization performance over
time, which is described as ”catastrophic forgetting” [16].
The standard way of dealing with catastrophic forgetting in
machine learning is by jointly mixing new training examples
with old ones, and re-training the model offline. As it is obvi-
ous, this process may require a vast amount of computational
resources, especially for large high dimensional datasets, and
represents a time-consuming and non-scalable solution.

An ideal online learning system would be able to absorb
new information without the need to store the entire training
set or repeating the training process from scratch on the whole
dataset. This paper proposes an online learning framework
that resembles the way the Hippocampal complex (HC) of the
brain adapts to new tasks, while remembering past knowledge
through selective sampling and retraining.

The novelty of the proposed scheme lies in the use of a
custom recurrent encoding-decoding scheme that automates
the procedure of discovering temporal patterns between tasks,
which are useful in the long term process of continuous train-
ing of the model and reduction of catastrophic forgetting. With
the proposed approach the model is able to consolidate recent
memories into a long term buffer-rehearsal storage [18]. With
a pseudo-rehearsal (memory-replay) strategy we avoid storing
previous training samples, resulting in a computationally more
efficient predictive scheme.

Section II provides an overview of the related work in the
field. Section III presents the proposed approach for efficient
estimation of FOC, under the online learning setup. Section IV
illustrates the experimental results achieved so far and Section
V briefly summarizes our findings and discusses the next steps
of this work.



II. RELATED WORK

The majority of solutions for FOC estimation in the mar-
itime sector is found in the field of operational research under
the broader task of weather routing, with more recent works
focusing on data-driven approaches [7, 11, 12]. They are sup-
ported by the exponential growth in vessel data availability in
the maritime sector either from on-board monitoring systems
or from AIS (Automatic Identification System) that describe
the state of the vessel during a voyage. These approaches aim
to improve estimation accuracy, whilst disregarding more prac-
tical problems, such as performance and long term robustness.

This streamlined process, from data collection to model
training, faces two major issues. The first is the lack of data
for all vessels and all types of navigation states and the
second is the high-volatility of factors that affect the prediction
performance (e.g. vessel condition, load, weather conditions
etc.). Consequently, pre-trained static models are incapable to
incorporate newly acquired data-instances and appropriately
adapt to new conditions and environments. Since on-board
sensors and AIS can provide useful information about the
vessel and its environment at real time, and this information
is continuously updated, data-driven methods [1] must be
properly adapted to take advantage of new data.

A potential solution in this direction is online learning [9].
In online learning, a model that can be initially trained on
historical data, is being trained continuously to adapt to the
new states and conditions of the vessel, or even adapt to
different vessels capturing their inherent characteristics. The
main idea and motivation behind adopting online training in
the maritime sector is to train and deploy a large generic
model that can be applied to different vessel types, engine
specs and weather states in order to cover the business need
for continuous and accurate estimation and prediction of a
vessel’s FOC while on route.

The pertinent literature that deals with the problem of online
learning over sequentially and disjointedly observed data falls
in the following categories: 1) works that modify the neural
network architecture on demand, by mapping the input space
to a network structure, such as Self Organizing Incremental
Neural Networks (SOINNs) [20]; 2) works that adapt the
NN weights by adding a regularization term in the loss
function [4]. that minimizes the distance between the weights
distributions assigned to the model on each training batch;
[14]. 3) methods that leverage information from different tasks
and use it at training time (multitask learning paradigm) [15],
or store previous samples in a rehearsal buffer; [3]. 4) works
that use auto-encoders to generate streams that resemble data
batches previously seen by the model [13].

Our contributions compared to related work are summarized
in the following: 1) the first application of online learning for
FOC estimation, 2) a novel hybrid auto-encoding/translating
scheme, which can be utilized as a concept drift detection tool;
3) a fully automated ”memory induced” sample generation
process that replaces the need to use a buffer for memory
replay, since ”memory” samples are generated on-the-fly from

the newly acquired samples; 4) a Recurrent Deep NN archi-
tecture that estimates FOC using real-time measurements from
on-board monitoring systems of the vessel.

III. PROPOSED APPROACH

A. FOC estimation model

The dynamic estimation of FOC based on vessel state and
environmental conditions can be examined as a multivariate
time-series prediction problem, that takes into account the
actual values, as well as their recent history, and captures the
information hidden in the values evolution over time. Based
on the superiority of Long short-term memory (LSTM) models
over traditional time-series prediction methods (e.g. ARIMA)
[19], LTSM NNs are chosen as the basis of our solution.

1) The basic LSTM NN for FOC estimation: LSTM is an
artificial Recurrent Neural Network (RNN) architecture [8],
which has been extensively used for time-series prediction [10]
tasks, especially because it is not so sensitive to the length of
gaps between important events in a time-series.

The input of the LSTM network at timestep tu comprises
N time-series, one for each feature of interest (speed through
waterW, wind speed, wind angle etc) and in order to use the re-
cent history of values in each feature, we employ a fixed-length
time-window (time-lag of length m). As a consequence, the
window contains the values for each time step ti ∈ [tk−m, tu]
for the weather and vessel state features that are used for the
estimation of FOC at time tu, resulting in N time-series,
of length m+ 1, of the form [FN(u−m), ..., FN(u−1), FN(u)],
for each feature FN . Given a sequence of consecutive time-
steps, and a multivariate feature set, we get the following
correspondence between the input and the output of the LSTM:


[F1(u−m) . . . Fj(u−m) . . . FN(u−m)]

...
[F1(i) . . . Fj(i) . . . FN(i)]

...
[F1(u) . . . Fj(u) . . . FN(u)]

 −→


FOCu−m

...
FOCi

...
FOCu

 , (1)

where N is the number of monitored features (and respectively
of the time-series fed to the LSTM), m is the window length,
and Fj(i) is the value of feature j ∈ [1, N ] at timestamp ti.
FOCi is the FOC value that we want to predict.

2) SplineLSTM: In a previous work [11] we demonstrated
the approximation capabilities of spline-based regression mod-
els [5] and their ability to adapt to the linear and non-
linear patterns that exist between dependent and independent
variables, as those that describe the underlying function that
approximates FOC. A spline regression of degree d partitions
the input space in sub-domains separated by k knots. Each
domain is approximated by different polynomial of degree up
to d. Splines of order d have continuous d − 1 derivatives,
a property that balances the trade off between goodness-of-
fit and smoothness of the spline interpolant, and results in a
predictive scheme with good generalization capabilities.



An example of spline regression and the polynomials that
are constructed in training time given a multi-variate feature
set: x1, . . . , xN and a target variable y is described as follows:

y = f(x) =


H1i(x1i, ..., x1Ni)b1i, x1i ∈ [ti, ti +∆t]
...
Hki(xki...xkNi

)bki, xki ∈ [ti + (k − 1)∆t, ti + k∆t],

0 otherwise

(2)
where ti is the corresponding time-step of observation xi, k
is the number of knots of the pre-trained SplineModeli, H(x)
are piece-wise continuous hinge functions of order d ≥ 1
defined on subsequent time intervals, and bin are the regression
coefficients of the pre-trained spline models, where i ∈ [1, k].

The proposed spline-based LSTM network uses the knowl-
edge gained in the pre-spline-training step for providing an
extended input vector of size k + N in each case, where
k is the number of knots of the respective spline function.
The proposed Spline network evaluates each feature xi on
the corresponding hinge function Hi generated from Spline
regression creating a k dimensional vector that quantifies the
impact of each feature in FOC estimation. This vector guides
the network to form spatial-aware embeddings that help the
model learn a different set of functions for different sub-
domains of interest.

With this transformation the LSTM network looks back m
time steps to form the hidden state units ht−1. The hidden
state acts as the NN memory for it holds information on data
the network has seen before. The input vector is constructed
by moving time windows that comprise: 1) (F1, . . . , FN )
values, 2) k values generated from evaluating our feature set
(F1, . . . , FN ) values at each of the k knots of the pre-trained
Spline model, and 3) the corresponding FOC values. The
resulting input vector at time instance ti takes the form:


[F1(1), . . . , FN(1), H1(1)(F1), . . . ,H1(k)(F1′)]

...
[F1(i), . . . , FN(i), Hi(1)(Fi), . . . ,Hi(k)(Fi′)]

...
[F1(m), . . . , FN(m), Hm(1)(Fm), . . . ,Hm(k)(Fm′)]

 → FOCi (3)

where m is the number of the previous time steps used to
form the initial 2D vector of velocity and its mean value, m
is the step used to set-up the time window vectors for the
hidden LSTM units and Hik is the i-th Hinge function of the
pre-trained spline regression model.

B. The formulation of the online learning task

Concept Drift detection and Elastic Weight Consolidation
(EWC) [14] are two frequently combined tasks in online
learning that aim to detect when re-training is needed and
adjust the ratio between samples retrieved from memory and
new samples in each re-training step. According to EWC, if
we assume that data comes from n statistically independent
distributions A1. . .An it is possible to separate the task in n

consecutive sub-tasks with the overall loss function of EWC
taking the form:

L(θ) =
∑n

i=1 LAi(θi) +
1
2

∑n−1
i=1 λi ∗ Fi(θAi+1 − θAi)

2 (4)

where θi denotes the set of the learned parameters of the
system that correspond to task Ai, LAi

(θ) is the loss function
for task Ai, θAi

are the parameters for task Ai, λi is a
factor that quantifies the memory window of the system
while traversing from task Ai to task Ai+1, and Fi is the
Fisher information matrix [17] that approximates the expected
overlapping information between two consecutive tasks (i.e.
Ai−1 and Ai).

The parameter λ in Eq. 4 introduces the notion of memory
to the learning system while it adapts to new data samples.
Based on the work presented in [6], given a specific training
policy P and a given domain with periodic shifts of interest
in the training set Ts, we model the expected performance f̄
of a learning system P as a function of signal to noise ratio
Z between different tasks on this domain of interest:

f̄ = E(f(Z)) =

ρTs−1∑
i=0

fiq(fi) (5)

where ρ = r
Ts

with r being the memory window of the system,
fi is the distinct value of f(Z) and q(fi) is the probability
distribution of f over Z.

For ρ > 1 equation (5) becomes

f̄ = m+ (M̄ −m)(
1

ρTS

n∑
i=0

f̄N (Zi)) (6)

where m̄ and M̄ is the minimum and maximum performance
of the algorithm respectively and fN (Z) is the normal char-
acteristic function of the system as described in [6] depending
only from signal to noise(N) ratio Z and some constants a,
b. Replacing the term ρTs = r in equation (6) with λ we can
observe that the expected performance of the learning system
E(f), in a domain where periodic concept shifts are defined,
is a function depending only from the memory window λ.

The use of a deep learning model (SplineLSTM ) in an
online learning setup raises the need to deal with abrupt or
gradual shifts in sample distribution statistics. Using a drift
detector to detect such changes, the online learning framework
introduces samples from past memory in order to assist the
model to adapt FOC estimation to newly acquired batches of
data.

C. A custom Recurrent Auto-Encoder (RAE) for concept drift
detection and sample generation

Auto-Encoders (AE) have been extensively used in numer-
ous applications from image generation to language modeling.
An extension of AEs are the Variational Auto Encoders (VAE),
generative models in statistical terms, that aim to approximate
the posterior distribution of the latent space generated by the
encoder using neural networks. VAEs map a single point of
the input space to a distribution in latent space, and then try
to approximate the posterior probability distribution of the



decoder in order to re-construct the input space. They differ
from AEs in the loss function. The loss function of a standard
VAE comprises of two terms and is defined as follows:

LV AE = ||x− x̄||2 +KL[N(µx, σx), N(0, 1)] (7)

where the first term represents the reconstruction error, and
the second term is the Kullback-Leibler (KL) divergence
confining the latent space distribution to a Gaussian, normal
like distribution ≃ N(0, 1). The first term is minimizing
the difference between the input space and the generated
reconstructed distribution of the decoder. The second term
is responsible for a regularized latent space by ensuring the
distributions generated by the encoder are as close as possible
to a normal Gaussian like distribution.

In order to develop an efficient sampling strategy for our
SplineLSTM model we introduce a NN-based scheme that,
given an evolving stream of data (A → B → C → . . . Z),
extracts ”meaningful” samples from older batches of data. The
scheme minimizes the generalization error on newly acquired
batches and maintains an acceptable accuracy on already
processed ones.

The trade-off between the accuracy (or error) achieved in
two consecutive data batches A and B of the following form

A :


[x11, . . . , x1n]

...
[xi1, . . . xin]

...
[xk1, . . . xkn]

 and B :


[y11, . . . , y1n]

...
[yi1, . . . yin]

...
[yk1, . . . ykn]

 , (8)

with k being the number of features and n being the number of
samples, can be modeled as a bounding error increase problem,
using a base learner BL as follows:

|L(BL, xA)− L(BL, yB)| < ϕ (9)

where ϕ is the maximum accepted error difference between
two consecutive tasks A, B and L is the evaluation function.

The model architecture of the neural sampling scheme
consists of two AEs, we call them translating auto-encoders
trAEA and trAEB since they reconstruct information from
one task to the internal memory layer and then back to another
task, and one intermediate memory layer M as depicted in
Figure 1. More specifically, the first auto-encoder (trAEA)
is responsible for compressing the information to represent
useful time instances for task A and decoding it back to the
memory layer. The memory layer M holds information for
both tasks A and B as serves as the last layer of the trAEA

and the first layer of the trAEB . Intuitively the memory layer
M represents the latent space representation of the translating
scheme. The second auto-encoder (trAEB) is responsible
for compressing the information from the memory layer and
decoding it back to represent task B.

Based on the regularization term of VAE’s loss function
as given in Equation 7 we introduce a custom regularization
term for the loss function of the translating scheme that

Figure 1: Sampling scheme for fixed length sequences

quantifies the amount of information (time-steps) the model
needs to remember in order to optimally reconstruct the chain
of different tasks (distributions) that is given at training time.
Consequently, the loss function of the proposed model for two
tasks A, B is modeled as follows:

LtrA−>B
= ||x̄− ȳ||2 +KL[N(µx̂, σx̂), N(µȳ, σȳ)] (10)

where N(µx̂, σx̂) is the output distribution of the first trans-
lating scheme trAEA, which is fed to the memory layer
M , and N(µȳ, σȳ) is the reconstructed output distribution
of the second translating scheme trAEB . Intuitively the loss
function of Equation 10 is responsible for guiding the model
to construct a latent space that represents a memory module
holding information from past tasks in order to be able to
adapt to new ones ideally.

The memory module M exists as an entity in the latent
space representation of the translating scheme from task A to
task B. Consequently, given a sequential training of a base
learner BL on a series of consecutive tasks, A to . . . Z, the
memory layer (MZ) that is responsible for the sampling of
task Z can be modeled as a function of all the memory layers
that correspond to the tasks preceding task Z, MA, . . .MY ,
as follows:

ˆMZ(t) = (MY ◦MX ◦ . . .MA)(t) =

=
∑N

i=0 wiM̂Z(MY (. . . (MA(t)) . . . )

(11)

where N is the number of time-steps in task Z, and wi are
the weights learned by the last translation scheme trZ .

Each memory module ˆMi(t) is passed as input to another
auto-encoding scheme that learns again, to encode and even-
tually decode the generated memory into the next task. The
loss function for the ith translating scheme tri is modeled as:

Ltri = ||xMi
−ȳi||2+KL[D(µMi−1

, σMi−1
), D(µi, σi)] (12)

The proposed translating auto-encoding scheme can be used
as a concept drift detector by monitoring its loss function
(i.e. 10). We can model the reconstruction error between two
consecutive batches of data A,B as a bounding error problem
as follows:

L(trA−>B) < λ (13)

When the reconstruction error between two consecutive tasks
A,B reaches the maximum error threshold λ we detect a



concept drift. It is then possible to identify the boundaries
of the input data distribution, where the drift occurred, and
enable the generation of past training samples.

IV. PRELIMINARY EXPERIMENTAL RESULTS

This section demonstrates the experimental results from the
use of the SplineLSTM in the online learning task of FOC
estimation. For simplicity, we assume that the consecutive
tasks are of fixed length, which removes the need for a drift
detector. First we evaluate the conventional offline learning
methods and then present the performance of the proposed
learner, that takes advantage of the memory-based generated
samples, when retraining the model between tasks.

A. Dataset description

The dataset of this study contains 24 ∗ 105 of minutely
measurements from sensors on board of an existing contain-
ership with a carrying capacity of 3000 TEUs 1. The dataset
spans roughly 6 months of the vessel route history and its
values correspond to a multitude of features describing a vast
majority of different round-trip voyages at different periods
and geographical locations2. More specifically the feature set
comprises: 1) vessel’s speed through water, 2) wind speed, 3)
wind angle, 4) swell wave height, 5) bearing (vessel course),
6) mid draft of the vessel and 7) and the corresponding FOC.

B. Experimental evaluation

The initial dataset is split into five statistically independent
subsets with each one comprising ≃ 5 ∗ 104 (1 month) in-
stances. The statistical independence across different datasets
has been preserved utilizing the Kruskal-Wallis which is a
non-parametric method for testing whether samples originate
from the same distribution. Each subset is then divided into
ten fix-length consecutive tasks, each one comprising ≃ 5∗103
observations (7 hours).

The base learner BL (SplineLSTM) learns online how to
estimate FOC using one of the following strategies:

1) BL is first trained on taskA and then on taskB in
a sequential manner, with the risk to forget task A
(Sequential Training)

2) BL is first trained on taskA and then trained on taskA∪
taskB (Joint Training)

3) BL is first trained on taskA and then trained on taskB
and on a memory batch taskABS

generated as explained
in Section III-C (between taskA and taskB): taskABS

∪
taskB (Memory Induced Training)

The plots in Figure 2 demonstrate the performance (i.e.
MAE) of the SplineLSTM using the three re-training strate-
gies in the 5 subsets. Mean Absolute Error(MAE) was mea-
sured separately on each task as we progressively continue the

1”The twenty-foot equivalent unit (abbreviated TEU or teu) is an inexact
unit of cargo capacity, often used for container ships and container ports.
It is based on the volume of a 20-foot-long (6.1 m) intermodal container, a
standard-sized metal box which can be easily transferred between different
modes of transportation, such as ships, trains, and trucks.”

2The dataset is available, in sanitized form, upon request to the first of
authors.

training procedure and overall for all the tasks combined. In
the legend of the graphs we display the average value of MAE
for all the tasks combined, for each training mode, for all the
datasets.
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Figure 2: Base learner(SplineLSTM) performance through 10
tasks for three modes of online training

Table I depicts the average improvement in Mean Absolute
Error (MAE) achieved by Joint or Memory Induced training
over the baseline Sequential training approach, in all the tasks
of each subset. Negative values denote a reduction in the
MAE (i.e. prediction performance improvement). All the im-
provements are statistically significant at the 99% confidence
interval using the 3σ rule (x̄ ± 3σ

√
n, x̄: the mean of the

population, σ: standard deviation, n: the sample size). From
the results, we can see that the proposed memory induced
training strategy performs better (in average) than joint and
sequential training in all subsets. This is very promising, since
the proposed method does not need a replay memory buffer
and thus is more memory efficient than the joint training
method.

Table I: Pairwise MAE Percentage change of SplineLSTM on
the 5 subsets

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Joint vs Sequential -22.2% -5.50% -25.1% -12.7% -23.7%

Memory Induced vs Sequential -48.8% -42.5% -40.4% -20.2% -42.6%

Memory Induced vs Joint -34.2% -45.7% -20.4% -20.2% -24.7%

V. CONCLUSIONS AND NEXT STEPS

After carefully examining the literature on data driven FOC
estimation techniques in the maritime sector, we realised the



importance of continuous model updating, and realized the
absence of online training methods that are able to overcome
the problem of catastrophic forgetting.

The novel SplineLSTM method that we proposed for FOC
estimation, allows the integration in a hybrid translating-auto-
encoding scheme with a memory module that is able to gen-
erate past training samples for more efficient updates through
re-training on task changes. This allows the SplineLSTM
model to quickly adapt to newly acquired data and changing
conditions.

The experimental evaluation assessed the performance of
our baseline FOC estimator in ten consecutive tasks using three
different model update strategies: sequential model training,
joint re-train with all the samples of the previous tasks,
and an on-the-fly sample generation strategy using an auto-
encoder scheme that is trained to capture information between
consecutive tasks.

Using the proposed update strategy, the baseline FOC
estimator manages to adapt to task changes and reduce the
prediction error across tasks. The average MAE in all datasets
across all tasks is improved when memory induced training is
applied.

In this work we assumed fixed length tasks and thus the
ability of the proposed method to also work as a drift detector
has not been employed. It is part of our ongoing work in this
field to experiment with unknown boundary tasks in order to
evaluate its ability to early detect task changes and quickly
confront catastrophic forgetting.

In a different direction, but related to the maritime tasks
we examined in this study, we are also working on the
development of models that efficiently generalise on different
types of vessels. Our next steps in this field will examine
the concepts of transfer learning and knowledge distillation,
in order to train larger, more abstract and more adaptive
models that can easily adapt to different vessel types, without
much re-training. Therefore one of our main future objectives
is to extend the proposed framework, so that it can build
generic cross - vessel - generative predictive models for FOC
estimation for different types of vessels.
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