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stations and satellites. The widespread use of AIS allowed vessel
tracking and increased the availability of ship trajectory data.

The problem of optimal-route-planning takes into consideration
the objectives of ship owners for energy consumption and on-
time delivery of goods and the restrictions set by the regulatory
framework (national regulations, IMO etc). Regardless the specific
constraints, what makes the optimal-route-problem so challenging
is the time-varying character of weather conditions during the
voyage of the vessel. In this work the optimal-route-problem is
mainly examined under the aspect of Fuel Oil Consumption (FOC)
and an optimal-route is this that minimizes the vessel’s FOC for a
given destination.

As it is well known from ship-powering literature, FOC is closely
related with the rotational speed (measured in revolutions per
minute - RPM) of the main engine. In this connection, the optimal
route problem could be significantly simplified if a good predictive
model for RPM is available. To elaborate further along this path, this
article summarizes the current status of our work to couple ship’s
velocity V with main-engine’s RPM in the context of a non-convex
regularized regression estimation problem and in conjunction with
the fact that, as marine engineering points out, there is a strong
correlation between these two factors. Coupling V with RPM will
give ship operator the benefit of a tool that does not impose in-
stallation requirements on the ship, like sensors for gathering data,
instead it can be readily used by only getting from satellites the
position of the ship, calculating its speed and getting the weather
conditions at each time interval. In the same time, it is a first step
towards integrating input from more sources (including weather
and sea condition data) and allowing the creation of data driven
models (black box models) that are able to predict and optimize
vessel consumption.

The rest of the paper is organized as follows: In section 2, a sum-
mary of the literature related to the routing optimization problem
in maritime industry is provided and analyzed. Section 3 presents
the motivation behind the work of this paper and summarizes our
initial exploratory experiments. Section 4 describes a formulation
of the problem at hand and gives an overview of the proposed al-
gorithm. Section 5 depicts and interprets the experimental results,
combined with statistical testing. Finally, Section 7 provides the
main conclusions of this work and outlines the next steps.

2 RELATED WORK

Following strong regulatory and societal demand for ships to re-
duce their emissions, current research activities focus on estimating
global shipping emissions and develop mitigating solutions to tackle
the problem, e.g. [30]. In addition, the increase and volatility in fuel
prices constitute a major problem for shipping companies as fuel
contributes approximately 60% to the overall ship operating cost
[6]. As a result, shipping companies move towards taking on board
energy efficient procedures and operations for reducing energy
consumption and thereby maintain their competitive position in
the market as well as reduce the environmental impact. There is
a plethora of theoretical papers related to ship route optimization,
starting as early as 1960 [31] and evolving from using simple con-
cepts, such as the so-called isochrone and isopone methods [7], to
more elaborate and rigorous approaches, such as optimal control
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[29], dynamic programming [24], graph theory [25] and evolution-
ary algorithms [26].

Numerous studies in different disciplines have been undertaken
to predict the fuel consumption by using ANN models [27] . ANN
is found to be the domain for many successful applications involv-
ing prediction tasks, such as modelling and prediction of energy-
engineering systems [22], prediction of the energy consumption of
passive solar buildings [10], developing energy system and forecast
of energy consumption [1], and analysis of emissions reduction
[20]. There are also some relevant reports of ANN’s being used for
implementing decision-support systems in various subjects, such
as solving the buffer allocation problem in reliable production [28],
developing environmental emergency decision-support systems
[24], risk assessment on prediction of terrorism insurgency [11]
and modeling of simulation metamodel [2]. ANNs have been used
to predict specific fuel consumption and exhaust temperature of a
Diesel engine for various injection timings [21].

The optimization objectives in the ship routing problem are usu-
ally the minimization of the voyage time, fuel consumption and
voyage risk. The approaches, which have appeared so-far in the
pertinent literature, can be classified in two large categories: (a)
Vessel-based optimization, where we optimize a given route with
respect to vessel characteristics, e.g., vessel speed, main-engine rota-
tional speed, trim, roll, heave and pitch motions, and (b) Condition-
based optimization, where we optimize a given route by taking into
account environmental data, e.g., wind (speed, direction), wave
(height, frequency, direction), currents, etc. The aforementioned
methods utilize techniques that can be separated into three main
categories: (a) Analytical approaches trying to tackle the problem
with the use of exact(NP-complete) and/or heuristic algorithms like
label - setting algorithms , non-linear integer programming, simu-
lated annealing [15]; (b) Data-oriented approaches that combine
vessel-trajectory data, gathered from sensors or satellites (AIS data),
with Machine- and Deep-Learning algorithms [23]; (c) Approaches
where ML (machine learning) methods, e.g., Box Models: White,
Black and Grey Box Models (WBM, BBM, GBM), are combined
with analytical methods, e.g., the equations of motions of a freely
floating body moving with constant forward speed (WBM), in order
to increase the accuracy of a regression method in a ML model
(BBM) [3].

Finally, methods that refine the voyage grid (map) in areas of
critical interest involving, e.g., weather conditions, emission control
areas (ECA, SECA: sulfur-oriented ECA’s), high-risk zones (piracy),
and choose from a set of optimal routes the best in terms of FOC
and safety (PARETO optimal solutions, Genetic Algorithms) [12]
must also be referenced.

3 MOTIVATION

The motivation for the current work came directly from a business
need for the optimisation of the ship engine usage (RPM) in relation
to FOC. Based on this requirement, we attempt first to perform an
exploratory analysis on a real dataset in order to understand the
nature of the FOC - RPM relation. Given the rich and composite
feature set of the FOC prediction problem, before training any multi-
parameter prediction model it is important to study the effect of
each parameter separately. The exploratory analysis was performed
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on a dataset comprising 10° observations from multiple ships and
allowed us to determine which feature is most appropriate for the
prediction of FOC (Fuel Oil consumption). Initial experiments on the
complete dataset were performed using feature selection algorithms
in order to rank the features by importance. The Random Forest
regression was used for selecting the most informative features.
The eight top ranked features on the basis of RF regression are
depicted in Table 1.

Feature importance
Importance| Description

Feature Name

RPM 0.98353 Main engine revolutions per minute.

STW 0.00365 Speed through water.

Speed Overground 0.00266 Speed of the ship with respect to the
ground.

Apparent wind 0.00133 The relative speed, i.e., the speed expe-

speed rienced by an observer or a measuring

instrument on the ship.

Port mid draft 0.00075 Draft amidships on the port side of the
ship; port is the left-hand side of a vessel
facing forward.

STBD mid draft 0.00042 Draft amidships on the starboard side of
the ship; starboard is the right-hand side,
facing forward.

Mid draft 0.00075 Draft amidships.

Apparent wind an- [[ 0.0007 The relative angle, i.e., the angle expe-

gle rienced by an observer or a measuring

instrument on the ship.

Table 1: The top ranked features by importance, using Ran-
dom Forest regression.

It is clear from Table 1 that RPM plays a pivotal role in the
prediction of FOC. Based on this finding, it seems reasonable to
develop a predictive model for FOC using RPM only, since it has
maximum importance and is much easier to measure than other
features (e.g. wind speed or draft). By measuring the correlation
between RPM and each of the remaining seven features of Table 1,
using PPMCC (Pearson Product Moment Correlation Coefficient),
showed an extremely high linear relation (0.92) between RPM and
speed overground a result that is also aligned with Figure 1 which
confirms a strong linear relationship between the two variables.
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Figure 1: A sample plot of Main-Engine’s rotational speed
(RPM) and observed speed during a vessel’s route (courtesy
of DANAOS Shipping Co.)
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Figure 2: The correlogram of RPM and V during a vessel’s
route

A survey of the pertinent literature on Naval Architecture and
Marine Engineering shows that there is no robust, low complexity,
analytical relation between RPM and V. On the other hand, signif-
icant work has been done in complex, time-consuming methods
that perform well, while taking into account various related factors,
such as geometric and hydrodynamic ones [17]. Thus, our effort
of finding a way to efficiently predict RPM from V utilizing data-
driven based methods is well justified. From ship hydrodynamics
it is well known that the , where Q is the torque absorbed by the
propeller of the ship. Then, recalling standard resistance and propul-
sion theory of ships, we can say that, for a given ship, the torque
Q is a function depending exclusively on the ratio V/RPM and, as
a result, predicting RPM from V is a decisive step for predicting
power and thus optimising fuel cost.

. This claim is also strengthened by recognizing the commercial
potential value of a model like this, as velocity V is a feature that
can be easily measured —even remotely from a satellite- and does
not require further installments (e.g. sensors) on board.

In order to further study what happens before and after velocity
changes, we plot the correlation coefficient for each lag variable
(observations at previous time steps). This gives a quick idea of
which lag variables may be good candidates for building a predictive
model and how the relationship between the observations and their
historic values changes over time.

The correlogram is a commonly used tool for checking random-
ness in a data set. In time series analysis, the correlogram, also
known as an autocorrelation plot, is a plot of the sample autocorrela-
tions ry, versus the time lag h. The correlogram of Figure 2 presents
the lag number along the x-axis (time axis), with values varying
between —8 % 103 and 8 * 10> minutes and the correlation coefficient
value (ranging from 0 to 1) along the y-axis. In random behaviors
the auto-correlations should be nearly zero for all time-lag sepa-
rations. In the opposite case, one or more of the auto-correlations
should be significantly different than zero. This is the case of RPM
in Figure 2, which reveals a strong correlation between RPM and V
mainly for time steps t+1, ...t+103 (m) that can be utilized to select
appropriate lag variables as extra features to our estimators.
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4 PROPOSED METHOD

4.1 Problem formulation

A formal definition of the problem of predicting RPMs based on the
monitored velocity (V) over ground can be defined as follows: Given
a vessel’s speed for n consecutive periods, find a function f(Vi, ..., Vy) :
R™ — R, which estimates the engine’s RPM at moment ty41.

If we assume that the relationship between RPM and V is a par-
tially linear function with non-linear segments over time, then it is
possible to describe this specific problem as a linear mixed-effects
model (LMM) [18]. A mixed model is a statistical model incorpo-
rating both fixed and random effects. A random-effects model is
a kind of hierarchical linear model, which assumes that the data
being analysed are drawn from a hierarchy of different populations,
whose differences relate to that hierarchy. These models are useful
in a wide variety of applications in physical, biological and social
sciences. They are particularly useful in settings where repeated
measurements are made on the same statistical units (longitudinal
study), or where measurements are made on clusters of related
statistical units.

The linear mixed-effects model (LMM) is a great way to model
regression algorithms between clustered data and explore the het-
erogeneity between effects within and between groups of similar
values [5]. The connection between RPM and V nicely fits the LMM
setting, since in most cases there exists some degree of correlation
between the two features which implies a linear dependency. Also,
in specific moments very similar V values correspond to different
values of RPM inducing a non-linear dependency. Analytically, an
LMM can be described as:

y=T-d+u+e, (1)

where y is a vector containing the previously observed values of
the feature we want to predict, T is a known matrix that relates
the observations y to the unknown fixed-effect vector d, u is the
unknown covariate vector for random effects and, finally, € is the
unknown vectors of random errors. Both u and € share zero-mean
normal distributions with cov(u, €) = 0.

A way to combine RPM and V through time (using discrete time
slots) is to assume that the following model holds true:

Yi =f(t,')+6i, i=1..,n, t;€ [O,T],
yi = RPM;, f(t:) = g(V(t:)) ()

where RPM; is ME rotational speed measured at time t;, V(#;) is
the ship’s speed measured at time t; and g(V) is the sought-for
underlying function that, when composed with the known function
V(t), gives, for t = t;, the corresponding RPM; with error ¢;. For
continuous time ¢, the above equation can be written as

y() = f() +e(r), t€[0,T],
y(8) == RPM(t),  f(t) := g(V(1)) = (g o V)(2), ®)

Since the measurement of V and RPM usually results in many
noisy observations a function learned from data can have the form
of a smoothing spline that balances between goodness and smooth-
ness of fit. A smoothing spline f(t), t € [0, 1] in the Sobolev space
H™2, consisting of L? functions whose weak derivatives of or-
der up to m belong to L? as well, is a solution of the following
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minimisation problem
min 2 [l( -H'W - f) +/1/1(fm(t))2dt] 4)
feH™ n y y ) >

where y = (Y1, ... yn)T, f = (f(t1),....f(tx))T and W is a given
positive definite matrix accounting for the correlation between the
components of the error vector €. The parameter A controls the
trade-off between fidelity-to-the-data and smoothness of fit and is
often referred to as the smoothing parameter. In [13, 14] it is shown
that the solution of (4) can be expressed as:

FO =Y dugu(®)+ D iRt ta), 5)

v=1 i=1
where ¢, (t) = t""1/(v=1),v = 1,...,m is a set of polynomials and
Ri(s,t) = /01(s—u)fr”_l(t—u)fr”_ldu/((m—1)!)2 withxy = xifx > 0
and x; = 0 if x < 0 otherwise, is a polynomial spline of degree
2m — 1, yielding the well-known cubic spline for m = 2. Denoting
T= {¢V(ti)}?;'fv:1, 3 = {RY(t;, tj}?;’f,j:r one can prove that

(ft1)s o fta)T =Td+ 0, :=Se, ©)

where ¢ = (cq, ...cn)T and d = (d1, ...,dn)T are solutions to the
so-called Henderson’s Mixed Model Equation (MME) [8]. Finding
the spline estimator for the Linear Mixed-Effects Model (LMM) de-
scribed in Equation (1), can be done using the Best Linear Unbiased
Estimators (BLUE) method [9]. As a result, using spline estimators
as a model for revealing the underlying relationship between V and
RPM seems to be rational and well grounded.

4.2 Partitioning the input space

In order to take advantage of the ability of Splines to fit to LMMs
problems and adapt on the local (temporal) nature of this correlation
between RPM and velocity, we build on this modeling theory. For
this purpose, we introduce splines as a way of achieving higher
accuracy in RPM prediction based on velocity history and we apply
clustering algorithms on the vessel’s trajectory data in order to find
sub-trajectories that share similar velocity values.

For predicting RPM values from velocity (V) measurements using
splines, we suggest to cluster the training space to regions with
similar velocity patterns. Regions must have similar N previous
values of V, on the basis that including velocity at N previous
time steps, as an extra feature in the training phase, will lead to a
higher accuracy when predicting RPM for time ¢ = t;1 as shown
in Section 3. Therefore, each cluster will represent subsets of similar
distributions, in terms of standard deviation and mean value, with
respect to the history of a value V; at a given time ¢; during a route.
All velocity instances V that have similar N previous values are
grouped in the same cluster in order to build and train different
models that represent different distributions. The training data
consists of a 2D vector of the form: (V(t;), Vn (#;))T with Vi (t;) =
mean[V(t;_nN, ..., V(t;)], and the corresponding RPM(t) value.

At the final stage of the evaluation the problem converts to a
problem of classification. Each instance V(t;) of the test (unseen)
dataset must be classified to the most similar clustery;). From this
point and on we predict the corresponding RPM(t;) value with the
specified modely ;) trained on this particular group of data.
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The idea behind the proposed piece-wise regression by clustering
is that, as previously stated, the relationship between RPM and V
is not linear at all times. As Figures 2 and 1 indicate there exists
a strong linear relationship between the dependent (RPM) and
independent (V) variables, nevertheless there are parts exhibiting a
higher-order (non-linear) correlation. This remark guides us to the
choice of building different models, each one corresponding to a
different part of relation between our variables (RPM,V), in order
to improve the overall accuracy.

Given a sample dataset comprising tuples of the form {(x;, y;), ...,
(Xm»>Yym)}, where x; := V(¢;) and y; := RPM(t;), we assume that
the relation between V and RPM, is described by a polynomial
regression model of the form:

F(x;) = by + byix; + ble-z +o+bpx] +e,i=1,..m

,orin matrix form: F = A(x1,...xm)b+¢€, (7)

where b = (b, by, ..., bn)T is the parameter vector, A is a Vander-
monde matrix, also referred as the design matrix, and ¢; is the error
vector. The problem of building K regression models in K different
clusters X1, Xs, ..., Xk can be formalized with the aid of (4.2) as
follows:

A1(X115 eeos X1mybs X1 = (X114 e X1my) T € X1,

F(x) =

T
Ap(xK1-XKmg )bk, XK = (XK15 000 XKy ) € X

®

When choosing K one must take into account the trade-off between
fitting the data and avoiding model complexity and overfitting,
which may result in poor generalization on unseen data. This is re-
lated to one of the most crucial aspects in function learning, known
as the trade-off between bias and variance. The value of K can
be chosen through cross-validation, with a possible upper-bound
dictated by the maximum tolerable complexity of the estimated
model. Clustering the data-set and choosing the optimal K plays a
crucial role in piece-wise regression analysis as the results of our
experiments (see Section 5) point out.

A draft sketch of the algorithm that performs regression on dif-
ferent sections (clusters) of velocity values to predict RPM follows.

The algorithm begins with the set of (velocity, RPM) pairs D
which is clustered into k clusters in a way that optimizes the bias-
vs-variance trade-off. Then each instance V(¢;) is classified to the
"best" cluster Dy, in terms of fitness (using the normalized distance
d;j from the centroid C; of each cluster. The model that has been
trained by the cluster that has minimum distance is used to predict
the corresponding RPM(t;) value.

5 EXPERIMENTAL EVALUATION

The aim of the experimental evaluation process is to test the ap-
plicability and the performance of the proposed methodology in
predicting RPM from previous observations of the velocity (V).
More specifically, the questions we examine within this experimen-
tal section are the following: (a) Does the clustering/partitioning of
the input space when combined with models trained separately for
each cluster affect the prediction performance? (b) Given a dataset
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Algorithm 1 Piecewise regression algorithm with clustered data

Require: D = {(v1,71), -vves (Oms rm) }: vi = V(8;), r1 = RPM(t;)
1: Split D into k clusters Dy, ..., Dy
2: foreach Dj,j € [1,k] do
B: M; = train_regression_model(Dj)
end
foreach V(t;) do
foreach Dj,j € [1,k] do
Cj = centroid(Dj)
- 1
'{” TV (@) N ) T-C)TP
Vn(ti) = mean[V(ti—N, ..., V(t;)]
Dy, = argmin(d, Dj)
end

end
8: RPM(t;) = M;(V(t;))

containing (RMP, V) observations, is there an optimal number of
clusters that maximizes prediction performance? (c¢) How does the
number of clusters relate to the expected performance? (d) Do
spline regression performs better than other established baselines?
(e) How does the combination of spline regression and clustering
of the input space perform?

In order to preserve the statistical independence of our results be-
tween different datasets, in all the experiments that follow we apply
the two-sample Kolmogorov-Smirnov (K-S) test. The K-S test is a
non-parametric test of the equality of continuous (or discontinuous),
one-dimensional probability distributions that is used to compare
one or more samples with a reference probability distribution. The
size of train and test subsets for the experiments presented below is
set to approximately 4 * 103 and 3 * 103 observations , respectively.

5.1 Regression methods

Apart from Spline Regression (Section 4.1), in our experiments we
evaluated three more regression techniques namely Linear Regres-
sion, Random Forest Regression and Neural Networks as follows:
Linear regression is a classic regression technique, which models
the output variables as linear combinations of the input variables.
The regression coeflicients of the input variables are usually esti-
mated using least-squares error or least absolute-error approaches
and the optimization problem is solved efficiently using either
quadratic-programming or linear-programming. In order to ac-
commodate non-linearity, when it exists, polynomial regression is
an alternative to linear regression analysis.

Random-Forest regression is an ensemble technique used for
classification and regression. It starts with constructing a set of
decision trees at training time and then outputs the majority output
value (in classification tasks) or the mean output value (in regression
tasks) of all individual trees. The randomness principle is either
covered by choosing a random subset of features or by choosing a
random subset of observations to train each individual tree.
Neural Networks is another popular technique for regression and
classification tasks. Using Python’s Keras framework we defined a
Neural Network with one input and four hidden layers, each one
consisting of 10 neurons and one output layer. We used rectified
linear unit RelU as the activation function of each layer. RelU is
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defined as y(x) = max(0, x), and is a function that —in contrast to
other activation functions— back-propagates the larger percent of
the error on the output to update the neuron weights. A stochas-
tic gradient descent process, the AdaGrad-optimizer of the Keras
framework- has been used to find the optimal set of weights for the
neural network. Each optimization run for 10 epochs (full training
cycles on the training set).

5.2 Clustering methods

The clustering techniques used in our experiments are K-means and
a triangulation-based clustering algorithm and are briefly explained
in the following. The techniques have been tested I£n datasets of
size 109 (g = 3, 4,5).

K-means clustering is a vector quantization method, with ori-
gins from the field of signal processing, that is widely used for data
clustering. Its main aim is to partition the observations (vectors)
into K clusters, so that each observation belongs to the cluster
with the nearest centroid (representative vector of the cluster). As
a result, the data space is partitioned into Voronoi cells.

Triangulation clustering (DC) [4] first partitions the training
space in triangles using a triangulation-based method. Delaunay
Triangulation (DT) was used in our experiments due to the fact that
is intrinsically related to the Voronoi diagram being actually its
dual graph. Another reason for opting in favour of DT among other
triangulation techniques is its close connection with the so-called
Delaunay Configurations that, as stated in [19], is closely related
with a multivariate extension of the univariate B-Splines used in
this paper for approximation.

By selecting a cut-off value p(a value that is used to determine
the neighboring points from the adjacency list of each candidate
vector [V(t;), Vn(t;)]} ) we can find for each point in the training
space its neighboring vertices in the resulting graph. By applying a
Depth-First-Search (DFS) algorithm it is possible to find isolated
subgraph components recursively as depicted in Figure 4, which
shows the resulting clusters for the pointset in Fig. 3.

The basic idea behind clustering with triangulation is that it
defines the cluster in a much broader manner, than, e.g., K-means,
being able to cluster observations in non-spherical neighborhoods.
Also K-means, in its general definition used here, doesn’t seem to
to detect outliers .In contrast with K-means DT based clustering,
as depicted in 4 is able to detect and remove outliers from clusters
resulting in more “reliable” clusters. Further research for improving
this method has to focus on the search of optimal cut-off value p.
Both clustering algorithms showed promising performance espe-
cially in conjunction with linear and spline regression, respectively.

5.3 The effect of clustering

Initial experiments were conducted for the previously described
clustering methods with constant training size of approximately
3103 instances. Specifically, we utilized the algorithm proposed in
Section 4.1 for the aforementioned regression methods, for different
values of k (clusters) (for k-means clustering) and different cut-off
values P (for the triangulation-based clustering). Indicative results
are collected in Figures 5 and 6.

Table 2 summarizes the results of the experimental evaluation
on five, statistically independent, samples of size 3 * 10> instances
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using different combinations of clustering (K-means, Delaunay
Triangulation (DT)) and regression (linear LR, splines-based SR,
random forests RF and neural networks NN). The table reports the
covariance of the input variables and the Mean Average Error (MAE)
of the predicted values. Results show that RF with K-means and
Splines with DT clustering have the best accuracy. However, the
optimal number of clusters varies, depending on the time instance
that the training sample was drown and therefore its distribution.
The DT-based methods perform better with the splines model (SR)
instead of LR and in some cases the overall accuracy achieved
by the SR/DT combination is higher than that achieved by LR or
RF combined with any of the clustering methods. Also, the DT
clustering method produces better space partitioning than K-means
when Spline regression is going to be used for RPM prediction.
The results of our experiments are aligned with the theory that
K-means is locally isotropic in contrast to DT clustering that is
moving in the search space for finding neighboring points by using
the weighted edges of the Delaunay Triangulation. On the other
hand Neural Networks do not seem to work well after clustering
as the results of Table 2 indicate.

Experimental Results

Algorithm [[ variance clusterer MAE opt #clusters if # T
SR 63.892 K-means 1.595 19
SR 66.497 K-means 2.527 6
SR 64.693 K-means 1.880 26
SR 63.892 DC 1.405 19
SR 66.497 DC 1.527 6
IR 63.892 K-means 1.58 19
LR 66.497 — 2.474 1
LR 64.693 K-means 1.761 30
LR 63.892 DC 1.580 19
LR 66.497 — 2.474 1
LR 64.693 — 2.340 1
RF 63.892 K-means 1.550 19
RF 66.497 K-means 2.055 5
RF 64.693 — 21.54 1
RF 63.892 DC 1.550 19
RF 66.497 DC 2.202 5
RF 64.693 — 1.880 1
NN 63.892 = 2.2021 T
NN 66.497 K-means 2.055 5
NN 64.693 — 2.141 1
NN 63.892 DC 12.345 19
NN 66.497 DC 9.234 5
NN 64.693 — 4.412 1

Table 2: Results of the experimental evaluation.

The experimental results in Figures 5 and 6 and Table 2 and
further results for five different statistically independent subsets of
approximately 4 * 10° observations are summarized in Figure 7 that
illustrates the mean difference (in error rate) between clustered and
non-clustered data for different regression methods.

Results show that clustering improves the regression algorithms
performance especially concerning the first three algorithms (i.e.
LR, RF, SR). On the other hand, the NN algorithm has worse perfor-
mance when combined with clustering, which is also obvious from
the last rows of Table 2. Another outcome is that Spline regression
(SR) exhibits the largest improvement in terms of prediction error
compared to the other three regression methods, when we com-
pare performance between the application in the original and the
clustered dataset. This result must be further examined in order to
search for a connection between the knots of the spline estimator
and the clustered input values. Finally, based on the experimental
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