

MOSES Project Overview

MOSES Facts

Project Title: AutoMated Vessels and Supply Chain Optimisation for Sustainable Short Sea Shipping

Call identifier: H2020-MG-2.6-2019

Topic: "Moving freight by Water: Sustainable infrastructure and Innovative Vessels"

Duration: 01.07.2020 - 30.06.2023 (36 months)

Funding scheme: RIA – Research and Innovation Action

o **EU contribution**: EUR 8 122 150

Coordinated by: National Technical University of Athens (NTUA), Greece

This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement No. 861678.

MOSES Consortium

17 Partners across Europe

Expertise in:

- Naval design
- Maritime Logistics
- Risk, Safety, Environmental
 Assessment
- Sustainability and Cost-benefit
 Analysis
- Autonomous System operation
- Port Infrastructure & operations
- Business Modelling
- Innovation Management

MOSES Vision

The aim of MOSES project is to <u>enhance the Short Sea Shipping (SSS)</u> <u>component</u> of the European supply chain by <u>addressing the</u> <u>vulnerabilities</u> and <u>strains</u> related to the operation of large containerships.

A two-fold strategy

SSS feeder services

Ship design for sustainable services – no infrastructure required

Logistics solution for balancing demand-supply

DSS ports efficiency

Technological solutions for improving DSS ports inefficiencies – reduce berthing time, improve safety

MOSES Concept & Innovations

MOSES Innovations:

- 1. MOSES AutoDock (MOSES Autonomous tugboats + AutoMoor)
- 2. MOSES Recharging Station

- 3. Innovative Feeder Vessel
- 4. Robotic container-handling system
- 5. MOSES matchmaking platform

MOSES Objectives

Develop an automated manoeuvring and docking system for DSS ports

Develop and promote a logistics matchmaking platform to boost SSS

Reduce the environmental footprint for SSS and ports

Technical `

Improve efficiency and end-toend delivery times of SSS mode

Societal

Promote smart port development with minimal investment

Develop concrete business cases

Design innovative, hybrid electric feeder vessel outfitted with a robotic container-handling system

MOSES Business Cases (1/2)

BC #1 (Western MED-Spain)

Containers are trans-shipped from Valencia port using land-based transportation modalities

BC #2 (Eastern MED-Greece)

Cargo from Piraeus to the Aegean islands is picked up by truck, delivered to warehouses and then loaded on another truck that off-loads it on RoRo ferries that serve the islands from Attica ports

MOSES Business Cases (2/2)

MOSES Transferability Business Case for North Europe

Open call and dedicated reserved budget in the first project year.

State of the art criteria

- Underperforming SSS route for domestic traffic competing with other modes
- TEN-T corridor (besides MED, Orient/East-MED)

MOSES Pilot Demonstrations

Pilot 1:AutoDock

SCOPE: Intelligent cooperation of autonomous tugboat swarm to manoeuvre a large containership and dock it by collaborating with an automated mooring system.

Faaborg harbour, Denmark (TUCO's facilities)

METHOD: 2x TUCO's Pro:Zero workboats will be equipped with MOSES autonomy package. The workboats will cooperate to maneuver a floating vessel to the dock. TRELLEBORG will fabricate and install on the dock a 1-off small-scale automated mooring unit prototype, outfitted with MOSES intelligence to collaborate with the workboats.

Pilot 2:Feeder

scope: Seakeeping and energy performance. Capability to be used for automated mooring.

MARIN's Seakeeping and Manoeuvring Basin (SMB), Netherlands

METHOD: A scaled ship model will be fabricated for 1 vessel design (out of the 3 evaluated in MOSES) and tested in seakeeping and manoeuvring basins.

Pilot 3:Robotic CHS

scope: Autonomous container handling capability and shared control between human operator and system.

METHOD: A full-scale, operational MacGregor GLE Crane, outfitted with sensor package, will be controlled by an operator at the MOSES Shore Control Station (SCS) to handle a container. The demo will be implemented with the SCS onsite and at a remote location.

MOSES upcoming outcomes

conceptual designs for the innovative feeder vessel / robotic system and a **roadmap** to fully autonomous operation, designed on concrete business cases

beta version of a matchmaking logistics platform

a **concept design** of a recharging station for automated vessels

working architecture and interface for Autonomous Tugboat Swarms that cooperate with a prototype of an Automated Mooring system

Technologies that will enhance the role of SSS and small ports

Pilot Demos

viable exploitation paths

MOSES impact

Decongestion of road and/or city infrastructure

Sustainability increase freight fed from intercontinental European ports using waterborne transport

Reduction of Co₂ and air pollutant emissions of intra-European freight transport

Modernization and increase of the reliability and competitiveness of Intra European Waterborne transport

Enhancement of the performance of the CEF TEN-T network

Demonstrate that the deployment of solutions can increase the quality of freight moved by SSS by at least 10% by 2039 compared to 2010 baseline data

Additional impact of MOSES project is on

The creation of new business opportunities for industry and SMEs in the EU

Safety of port processes

European policies for manufacturing and automation

Competitiveness of European ports and shipping companies

www. moses-h2020.eu

MOSES project2020

@mosesproject20

MOSES Project

Thank you for your attention!

If you have any questions or require further information, please contact us:

Prof. Nikolaos P. Ventikos
National and Technical University of Athens-NTUA
National Technical University Campus
School of Naval Architecture and Marine Engineering, Office Γ.304
9, Iroon Politechniou Str.

GR-15773, Zografou Athens. GREECE *Tel*: +30 2107723563

email: niven@deslab.ntua.gr, mosesproject20@gmail.com.

